硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (11): 3916-3933.DOI: 10.16552/j.cnki.issn1001-1625.2025.0787
马梓涵, 肖顺民, 姜义, 谷镇江, 申培亮, 潘智生
收稿日期:2025-08-04
修订日期:2025-09-22
出版日期:2025-11-15
发布日期:2025-12-04
通信作者:
申培亮,博士,教授。E-mail:peiliang.shen@polyu.edu.hk
作者简介:马梓涵(1995—),男,博士研究生。主要从事固废碳矿化方面的研究。E-mail:zihan.ma@connect.polyu.hk
基金资助:MA Zihan, XIAO Shunmin, JIANG Yi, GU Zhenjiang, SHEN Peiliang, POOM Chisun
Received:2025-08-04
Revised:2025-09-22
Published:2025-11-15
Online:2025-12-04
摘要: 固废的资源化利用是推进“无废城市”建设的重要路径。碳矿化技术可实现二氧化碳的捕集与封存,同时提升固废的活性,改善其在建材领域的适用性。本文以固废基材料的资源化利用为核心,系统综述了当前固废基材料碳矿化的理论研究进展与技术开发现状,重点总结了碳矿化过程中溶解-沉淀机制的最新研究成果,以及典型固废组分的分类特征及其碳矿化活性。进一步归纳了基于水分调控、传质强化和仿生策略的固废基材料碳矿化的新兴技术路径。最后,提出未来研究应在提升碳矿化效率与产品性能的同时,统筹考虑能耗水平、产物稳定性及其工程化应用前景,推动碳矿化技术向高效、低碳和可持续方向发展。
中图分类号:
马梓涵, 肖顺民, 姜义, 谷镇江, 申培亮, 潘智生. 固废基材料碳矿化理论与技术研究进展[J]. 硅酸盐通报, 2025, 44(11): 3916-3933.
MA Zihan, XIAO Shunmin, JIANG Yi, GU Zhenjiang, SHEN Peiliang, POOM Chisun. Research Progress on Theory and Technology of Carbon Mineralization for Solid Waste-Based Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(11): 3916-3933.
| [1] 尹诚悦, 李 健, 杨延峰, 等. 山东省大宗工业固体废物污染防治及资源化利用地方标准现状研究[J]. 山东科学, 2025, 38(2): 53-61. YIN C Y, LI J, YANG Y F, et al. Study on local standards for pollution control and resource utilization of bulk industrial solid waste in Shandong province[J]. Shandong Science, 2025, 38(2): 53-61 (in Chinese). [2] 段珍华, 侯少丹, 潘智生, 等. 再生细骨料混凝土流变性及其对强度和耐久性的影响[J]. 建筑结构学报, 2020, 41(增刊2): 420-426. DUAN Z H, HOU S D, PAN Z S, et al. Rheology of recycled fine aggregate concrete and its influence on strength and durability[J]. Journal of Building Structures, 2020, 41(supplement 2): 420-426 (in Chinese). [3] WANG B, YAN L B, FU Q N, et al. A comprehensive review on recycled aggregate and recycled aggregate concrete[J]. Resources, Conservation and Recycling, 2021, 171: 105565. [4] 郑业超, 依 爽, 赵通林, 等. 铁尾矿制备混凝土的应用现状[J/OL]. 矿产综合利用, 1-11 (2024-11-29) [2025-09-29]. https://link.cnki.net/urlid/51.1251.TD.20241129.1352.002. ZHENG Y C, YI S, ZHAO T L, et al. The application status of iron tailings in concrete preparation[J/OL]. Multipurpose Utilization of Mineral Resources, 1-11 (2024-11-29) [2025-09-29]. https://link.cnki.net/urlid/51.1251.TD.20241129.1352.002 (in Chinese). [5] NAYAK D K, ABHILASH P P, SINGH R, et al. Fly ash for sustainable construction: a review of fly ash concrete and its beneficial use case studies[J]. Cleaner Materials, 2022, 6: 100143. [6] RASHAD A M. Phosphogypsum as a construction material[J]. Journal of Cleaner Production, 2017, 166: 732-743. [7] SNÆBJÖRNSDÓTTIR S Ó, SIGFÚSSON B, MARIENI C, et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment, 2020, 1(2): 90-102. [8] ZAJAC M, MARUYAMA I, IIZUKA A, et al. Enforced carbonation of cementitious materials[J]. Cement and Concrete Research, 2023, 174: 107285. [9] LI G, TAO Y, ZHU X P, et al. Optimal CO2 intake in metastable water film in mesoporous materials[J]. Nature Communications, 2024, 15(1): 10790. [10] GAO Y N, JIANG Y, TAO Y, et al. Accelerated carbonation of recycled concrete aggregate in semi-wet environments: a promising technique for CO2 utilization[J]. Cement and Concrete Research, 2024, 180: 107486. [11] XIAO Z Q, ZHANG J, HU X, et al. An overview on polymorphs of calcium carbonate formed during carbon mineralization of cementitious materials[J]. Journal of Sustainable Cement-Based Materials, 2025, 14(5): 1005-1027. [12] RASHID M I, YAQOOB Z, MUJTABA M A, et al. Developments in mineral carbonation for carbon sequestration[J]. Heliyon, 2023, 9(11): e21796. [13] GU Z J, JIANG Y, MA Z H, et al. From waste to crystal: synthesis of aragonite whiskers from recycled concrete fine powder via a novel carbonation method[J]. ACS Sustainable Chemistry & Engineering, 2025, 13(35): 14356-14373. [14] GU Z J, JIANG L, MA Z H, et al. Achieving instantaneous activation of recycled concrete powder by hyper-gravity carbonation[J]. Cement and Concrete Composites, 2025, 163: 106177. [15] SANNA A, UIBU M, CARAMANNA G, et al. A review of mineral carbonation technologies to sequester CO2[J]. Chemical Society Reviews, 2014, 43(23): 8049-8080. [16] BOBICKI E R, LIU Q X, XU Z H, et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy and Combustion Science, 2012, 38(2): 302-320. [17] LIU S H, LI D L, YU S Y, et al. Enhanced carbonation reactivity of high-magnesium low-calcium binders from magnesian limestone via low-temperature calcination[J]. Construction and Building Materials, 2025, 489: 142414. [18] LACKNER K S, WENDT C H, BUTT D P, et al. Carbon dioxide disposal in carbonate minerals[J]. Energy, 1995, 20(11): 1153-1170. [19] AUROY M, POYET S, LE BESCOP P, et al. Comparison between natural and accelerated carbonation (3% CO2): impact on mineralogy, microstructure, water retention and cracking[J]. Cement and Concrete Research, 2018, 109: 64-80. [20] ABDOLHOSSEINI QOMI M J, MILLER Q S, ZARE S, et al. Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films[J]. Nature Reviews Chemistry, 2022, 6(9): 598-613. [21] ZAJAC M, SKIBSTED J, DURDZINSKI P, et al. Kinetics of enforced carbonation of cement paste[J]. Cement and Concrete Research, 2020, 131: 106013. [22] ZAJAC M, SKIBSTED J, DURDZINSKI P, et al. Effect of alkalis on products of enforced carbonation of cement paste[J]. Construction and Building Materials, 2021, 291: 123203. [23] LI G S, LIU S H, HU X, et al. Effect of pH environment on carbonation properties of γ-C2S[J]. Construction and Building Materials, 2025, 461: 139888. [24] DROUET E, POYET S, LE BESCOP P, et al. Carbonation of hardened cement pastes: influence of temperature[J]. Cement and Concrete Research, 2019, 115: 445-459. [25] WANG D C, NOGUCHI T, NOZAKI T. Increasing efficiency of carbon dioxide sequestration through high temperature carbonation of cement-based materials[J]. Journal of Cleaner Production, 2019, 238: 117980. [26] 张旭辉, 刘博文, 杨 玲, 等. 不同温度和强度影响下混凝土碳化性能试验研究[J]. 建筑结构, 2020, 50(24): 110-115. ZHANG X H, LIU B W, YANG L, et al. Experimental study on concrete carbonation performance under the influence of different temperature and strength[J]. Building Structure, 2020, 50(24): 110-115 (in Chinese). [27] JIANG Y, PENG L G, MA Z H, et al. Enhancing the treatment efficiency of recycled concrete fines with aqueous carbonation[J]. Cement and Concrete Research, 2023, 174: 107338. [28] 黎 帅, 周凤娇, 谭新宇, 等. 二氧化碳浓度对低钙固碳胶凝材料性能影响及机理研究[J]. 硅酸盐通报, 2023, 42(9): 3109-3116. LI S, ZHOU F J, TAN X Y, et al. Effect of carbon dioxide concentration on performance of low-calcium carbon sequestration cementitious materials and its mechanism[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3109-3116 (in Chinese). [29] MA Z H, JIANG L, JIANG Y, et al. Utilizing waste cement for carbon dioxide sequestration and capture: the role of water content on the growth of calcium carbonate[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(6): 2273-2288. [30] KIM C, KIM J, JOO S, et al. Efficient CO2 utilization via a hybrid Na-CO2 system based on CO2 dissolution[J]. iScience, 2018, 9: 278-285. [31] FANG X L, XUAN D X, POON C S. Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions[J]. Materials and Structures, 2017, 50(4): 200. [32] GHOLIZADEH-VAYGHAN A, BELLINKX A, SNELLINGS R, et al. The effects of carbonation conditions on the physical and microstructural properties of recycled concrete coarse aggregates[J]. Construction and Building Materials, 2020, 257: 119486. [33] 冯 超, 关博文, 张 奔, 等. 湿度对氯氧镁水泥二氧化碳吸附能力影响研究[J]. 硅酸盐通报, 2018, 37(8): 2355-2360. FENG C, GUAN B W, ZHANG B, et al. Effect of humidity on carbon dioxide sorption capacity of magnesium oxychloride cement[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2355-2360 (in Chinese). [34] ZARE S, SALAH UDDIN K M, FUNK A, et al. Nanoconfinement matters in humidified CO2 interaction with metal silicates[J]. Environmental Science: Nano, 2022, 9(10): 3766-3779. [35] ZARE S, FUNK A, ABDOLHOSSEINI QOMI M J. Formation and dissolution of surface metal carbonate complexes: implications for interfacial carbon mineralization in metal silicates[J]. The Journal of Physical Chemistry C, 2022, 126(28): 11574-11584. [36] GAO Y N, TAO Y, LI G, et al. Moisture-driven carbonation kinetics for ultrafast CO2 mineralization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122(1): e2418239121. [37] ZAJAC M, SKIBSTED J, BULLERJAHN F, et al. Semi-dry carbonation of recycled concrete paste[J]. Journal of CO2 Utilization, 2022, 63: 102111. [38] SHEN P L, ZHANG Y Y, JIANG Y, et al. Phase assemblance evolution during wet carbonation of recycled concrete fines[J]. Cement and Concrete Research, 2022, 154: 106733. [39] CHANG R, KIM S, LEE S, et al. Calcium carbonate precipitation for CO2 storage and utilization: a review of the carbonate crystallization and polymorphism[J]. Frontiers in Energy Research, 2017, 5: 17. [40] SAITO T, SAKAI E, MORIOKA M, et al. Carbonation of γ-Ca2SiO4 and the mechanism of vaterite formation[J]. Journal of Advanced Concrete Technology, 2010, 8(3): 273-280. [41] ZHOU Y Q, WU F S, JINAG L, et al. Production of vaterite via wet carbonation of carbide residue: enhancing cement properties and CO2 sequestration[J]. Cement and Concrete Composites, 2024, 150: 105549. [42] 乔静怡, 陈秋菊, 刘卓齐, 等. 磷石膏矿化CO2制备球霰石型碳酸钙试验研究[J]. 化工矿物与加工, 2023, 52(9): 14-18+25. QIAO J Y, CHEN Q J, LIU Z Q, et al. Experimental study on preparation of vaterite-based calcium carbonate by CO2 mineralization with phosphogypsum[J]. Industrial Minerals & Processing, 2023, 52(9): 14-18+25 (in Chinese). [43] 李昱蓓, 刘松辉, 朱建平, 等. 电石渣制备球霰石型CaCO3的影响因素研究[J]. 硅酸盐通报, 2023, 42(8): 2799-2807+2820. LI Y B, LIU S H, ZHU J P, et al. Influencing factors of preparation of vaterite type CaCO3 by carbide slag[J]. Bulletin of the Chinese Ceramic Society, 2023,42(8): 2799-2807+2820 (in Chinese). [44] ZHONG D Q, ZHANG W W, ZHANG S W, et al. Preparation of aragonite whisker-rich materials by wet carbonation of magnesium slag: a sustainable approach for CO2 sequestration and reinforced cement[J]. Construction and Building Materials, 2024, 418: 135429. [45] SHEN P L, LU J X, ZHANG Y Y, et al. Preparation aragonite whisker-rich materials by wet carbonation of cement: towards yielding micro-fiber reinforced cement and sequestrating CO2[J]. Cement and Concrete Research, 2022, 159: 106891. [46] 张赛赛, 张欣雨, 沈园园, 等. 基于湿法碳化电石渣的碳酸钙制备及其性能调控研究[J]. 河南理工大学学报(自然科学版), 2025, 44(3): 181-188. ZHANG S S, ZHANG X Y, SHEN Y Y, et al. Synthesis and performance control of calcium carbonate based on wet carbonation of carbide slag[J]. Journal of Henan Polytechnic University (Natural Science), 2025, 44(3): 181-188 (in Chinese). [47] HUANG J Y, CHEN Y X, YU Q L. Amorphous calcium carbonate formation from carbonated recycled cement powder: a novel carbonation-activated cementitious material[J]. Composites Part B: Engineering, 2025, 297: 112336. [48] ZAJAC M, LECHEVALLIER A, DURDZINSKI P, et al. CO2 mineralisation of Portland cement: towards understanding the mechanisms of enforced carbonation[J]. Journal of CO2 Utilization, 2020, 38: 398-415. [49] VILLMOW S, MIELKAU A, GOETZ-NEUNHOEFFER F, et al. Wet carbonation of C3A and pre-hydrated C3A[J]. Cement and Concrete Research, 2023, 173: 107259. [50] ZAJAC M, SKIBSTED J, SKOCEK J, et al. Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation[J]. Cement and Concrete Research, 2020, 130: 105990. [51] MILLER Q R S, SCHAEF H T, KASZUBA J P, et al. Quantitative review of olivine carbonation kinetics: reactivity trends, mechanistic insights, and research frontiers[J]. Environmental Science & Technology Letters, 2019, 6(8): 431-442. [52] MA Z H, JIANG Y, DING T J, et al. Elucidating the behaviours and mechanisms of enforced carbonation in ferrite[J]. Cement and Concrete Research, 2025, 195: 107916. [53] DAVAL D, TESTEMALE D, RECHAM N, et al. Fayalite (Fe2SiO4) dissolution kinetics determined by X-ray absorption spectroscopy[J]. Chemical Geology, 2010, 275(3/4): 161-175. [54] QAFOKU O, KOVARIK L, KUKKADAPU R K, et al. Fayalite dissolution and siderite formation in water-saturated supercritical CO2[J]. Chemical Geology, 2012, 332: 124-135. [55] 房延凤. 钢渣中碱性矿物碳酸化及产物衍变规律研究[D]. 大连: 大连理工大学, 2017. FANG Y F. Carbonation of alkaline minerals in steel slag and products evolution process[D]. Dalian: Dalian University of Technology, 2017 (in Chinese). [56] LIU P, ZHANG M, MO L W, et al. Probe into carbonation mechanism of steel slag via FIB-TEM: the roles of various mineral phases[J]. Cement and Concrete Research, 2022, 162: 106991. [57] KUSIN F M, HASAN S N M S, MOLAHID V L M, et al. Carbon dioxide sequestration of iron ore mining waste under low-reaction condition of a direct mineral carbonation process[J]. Environmental Science and Pollution Research International, 2023, 30(9): 22188-22210. [58] DAS S, SOULIMAN B, STONE D, et al. Synthesis and properties of a novel structural binder utilizing the chemistry of iron carbonation[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8295-8304. [59] CHEN Z M, LI R, ZHENG X M, et al. Carbon sequestration of steel slag and carbonation for activating RO phase[J]. Cement and Concrete Research, 2021, 139: 106271. [60] LI W Z, CAO M L, WANG D, et al. Improving the hydration activity and volume stability of the RO phases in steel slag by combining alkali and wet carbonation treatments[J]. Cement and Concrete Research, 2023, 172: 107236. [61] ZHU M Y, YU Q L, VAN DER LAAN S R, et al. Dipotassium hydrogen phosphate activated Al-rich steel slag: the role of layered double hydroxides and aluminum hydrate gel[J]. Cement and Concrete Research, 2025, 189: 107783. [62] KIM S, KIM J, JEON D, et al. Enhanced mechanical property of steel slag through glycine-assisted hydration and carbonation curing[J]. Cement and Concrete Composites, 2024, 149: 105532. [63] SOLIMAN N, ROGHANI H, AGHAYAN I, et al. Utilization of steelmaking by-products in the construction industry: a comprehensive review of steel slag and steel mill scale[J]. Case Studies in Construction Materials, 2025, 23: e05077. [64] WEI G Q, DONG B Q, FANG G H, et al. Understanding reactive amorphous phases of fly ash through the acidolysis[J]. Cement and Concrete Composites, 2023, 140: 105102. [65] WANG L, SUN N, TANG H H, et al. A review on comprehensive utilization of red mud and prospect analysis[J]. Minerals, 2019, 9(6): 362. [66] WANG D, CHANG J. Comparison on accelerated carbonation of β-C2S, Ca(OH)2, and C4AF: reaction degree, multi-properties, and products[J]. Construction and Building Materials, 2019, 224: 336-347. [67] REN Z Y, LI D S. Application of steel slag as an aggregate in concrete production: a review[J]. Materials, 2023, 16(17): 5841. [68] SEVELSTED T F, SKIBSTED J. Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy[J]. Cement and Concrete Research, 2015, 71: 56-65. [69] SUN W Z, LIU C B, HONG F, et al. Microscopic transport and degradation behavior of CO2 in C-S-H with varying Ca/Si ratios during carbonation[J]. Buildings, 2024, 14(9): 2808. [70] LAU C K, ROWLES M R, PARNHAM G N, et al. Investigation of geopolymers containing fly ash and ground-granulated blast-furnace slag blended by amorphous ratios[J]. Construction and Building Materials, 2019, 222: 731-737. [71] WILLIAMS R P, VAN RIESSEN A. Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD[J]. Fuel, 2010, 89(12): 3683-3692. [72] BEN HAHA M, LE SAOUT G, WINNEFELD F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags[J]. Cement and Concrete Research, 2011, 41(3): 301-310. [73] ZHANG Y. The effect of blast furnace slag chemistry on carbonation characteristics of cement-slag systems[D]. Netherlands: Delft University of Technology, 2017. [74] BERNAL S A, PROVIS J L, MYERS R J, et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders[J]. Materials and Structures, 2015, 48(3): 517-529. [75] CHEN J, FU C K, MAO T Y, et al. Study on the accelerated carbonation of MSWI fly ash under ultrasonic excitation: CO2 capture, heavy metals solidification, mechanism and geochemical modelling[J]. Chemical Engineering Journal, 2022, 450: 138418. [76] MARPLE M A T, KOROGLU B, MORRISON K, et al. Accelerated carbonation and structural transformation of blast furnace slag by mechanochemical alkali-activation[J]. Cement and Concrete Research, 2022, 156: 106760. [77] LIU R, WANG X L, GAO S W. CO2 capture and mineralization using carbide slag doped fly ash[J]. Greenhouse Gases: Science and Technology, 2020, 10(1): 103-115. [78] WANG X, WEI X L, NI W. Impacts of hydration degree of steel slag on its subsequent CO2 capture behaviors and mechanical performances of prepared building materials[J]. Construction and Building Materials, 2024, 416: 135075. [79] LI Y R, LIAO H Q, GUO Y X. Aqueous carbonation of steel slag and preparation of calcium carbon: a new strategy for the utilization of steel slag[J]. Journal of Environmental Chemical Engineering, 2025, 13(2): 115951. [80] HUMBERT P S, CASTRO-GOMES J. CO2 activated steel slag-based materials: a review[J]. Journal of Cleaner Production, 2019, 208: 448-457. [81] HUANG X L, ZHANG J F, ZHANG L. Accelerated carbonation of steel slag: a review of methods, mechanisms and influencing factors[J]. Construction and Building Materials, 2024, 411: 134603. [82] POON C S, SHEN P L, JIANG Y, et al. Total recycling of concrete waste using accelerated carbonation: a review[J]. Cement and Concrete Research, 2023, 173: 107284. [83] MAZZELLA A, ERRICO M, SPIGA D. CO2 uptake capacity of coal fly ash: influence of pressure and temperature on direct gas-solid carbonation[J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 4120-4128. [84] JIANG L, CHENG L, ZHANG Y X, et al. A review on CO2 sequestration via mineralization of coal fly ash[J]. Energies, 2023, 16(17): 6241. [85] ZIDE S, HO H J, IIZUKA A, et al. Direct mineral carbonation of fly ash under high pressure using acid mine drainage: effects of solid-to-liquid ratio, stirring speed and CO2 pressure[J]. Environmental Progress & Sustainable Energy, 2025, 44(2): e14545. [86] HO H J, IIZUKA A. Chemical-free pressure-swing carbonation of blast furnace slag for CO2 utilization and sequestration[J]. ACS Sustainable Chemistry & Engineering, 2025, 13(10): 3842-3852. [87] ZHANG H Z, MEN J H, SHAO J X, et al. Aqueous carbonation of ground granulated blast furnace slag and calcium carbide slag blends: CO2 sequestration and application as mineral admixtures in cementitious materials[J]. Construction and Building Materials, 2025, 489: 142280. [88] WEHRUNG Q, BERNASCONI D, DESTEFANIS E, et al. Aqueous carbonation of waste incineration residues: comparing BA, FA, and APCr across production scenarios[J]. Minerals, 2024, 14(12): 1269. [89] SUN X L, XU B, YI Y L. Effects of accelerated carbonation on fine incineration bottom ash: CO2 uptake, strength improvement, densification, and heavy metal immobilization[J]. Journal of Cleaner Production, 2024, 475: 143714. [90] FAN X, UNIVERSITY W, ZHANG D, et al. Unveiling the role of processing route in CO2 mineralization by incineration bottom ash under near-ambient aqueous conditions[J]. Environmental Science & Technology Letters, 2025, 12(3): 341-347. [91] SLIEM M H, IRSHIDAT M, HASSAN M K, et al. Mechanochemical treatment of incinerated municipal bottom ash in CO2-rich environment for sustainable waste management practices[J]. Journal of Environmental Management, 2025, 389: 126171. [92] WANG S J, LIN X, ZHANG Y, et al. A review of utilizing carbide slag to sequestrate carbon dioxide by mineral carbonation: mechanisms, processes, and value-added products[J]. Fuel, 2025, 384: 134041. [93] ZHANG Q, FENG P, SHEN X Y, et al. Comparative analysis of carbonation strengthening mechanisms in full solid waste materials: steel slag vs. carbide slag[J]. Cement and Concrete Composites, 2025, 157: 105927. [94] ZHU L, LIU C Y, XI X, et al. Effect of wet carbonation of calcium carbide slag on CO2 sequestration and the prevention of coal spontaneous combustion[J]. ACS Omega, 2025, 10(17): 17940-17947. [95] XUAN D X, ZHAN B J, POON C S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates[J]. Cement and Concrete Composites, 2016, 65: 67-74. [96] DUO Z, YIXIN S. Enhancing chloridecorrosion resistance of precast reinforced concrete by carbonation curing[J]. Aci Materials Journal, 2019, 116(3): 3-12. [97] PAN X Y, SHI C J, FARZADNIA N, et al. Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing[J]. Cement and Concrete Composites, 2019, 99: 89-99. [98] MENG Y Z, LING T C, MO K H, et al. Enhancement of high temperature performance of cement blocks via CO2 curing[J]. Science of The Total Environment, 2019, 671: 827-837. [99] XIAN X P, ZHANG D, LIN H, et al. Ambient pressure carbonation curing of reinforced concrete for CO2 utilization and corrosion resistance[J]. Journal of CO2 Utilization, 2022, 56: 101861. [100] CHEN D Y, CHEN M Z, SUN Y H, et al. Sustainable use of recycled cement concrete with gradation carbonation in artificial stone: preparation and characterization[J]. Construction and Building Materials, 2023, 364: 129867. [101] GAL J Y, BOLLINGER J C, TOLOSA H, et al. Calcium carbonate solubility: a reappraisal of scale formation and inhibition[J]. Talanta, 1996, 43(9): 1497-1509. [102] BRIKI Y, ZAJAC M, BEN HAHA M, et al. Impact of limestone fineness on cement hydration at early age[J]. Cement and Concrete Research, 2021, 147: 106515. [103] MA Z H, JIANG Y, HE J H, et al. Revealing the connection between carbonation regimes and early pozzolanic reactivity of recycled concrete powder: impact of composition and microstructure[J]. Cement and Concrete Research, 2024, 186: 107697. [104] LIU G, TANG Y J, WANG J Y. Effects of carbonation degree of semi-dry carbonated converter steel slag on the performance of blended cement mortar: reactivity, hydration, and strength[J]. Journal of Building Engineering, 2023, 63: 105529. [105] YUAN J G, CHANG J, BAI Y. Preparation of supplementary cementitious material by semi-dry carbonated ternesite and its effect on hydration and mechanical properties of Portland cement[J]. Cement and Concrete Research, 2025, 193: 107870. [106] WANG Y S, MENG L Y, CHEN L, et al. An innovative strategy for CO2 conversion and utilization: semi-wet carbonation pretreatment of wollastonite to prepare carbon-fixing products and produce LC3[J]. Cement and Concrete Composites, 2025, 160: 106050. [107] FANG Y F, SHAN J X, WANG Q H, et al. Semi-dry and aqueous carbonation of steel slag: characteristics and properties of steel slag as supplementary cementitious materials[J]. Construction and Building Materials, 2024, 425: 135981. [108] KIM J H, KWON W T. Semi-dry carbonation process using fly ash from solid refused fuel power plant[J]. Sustainability, 2019, 11(3): 908. [109] BAUER M, GASSEN N, STANJEK H, et al. Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO2 sequestration[J]. Applied Geochemistry, 2011, 26(8): 1502-1512. [110] YANG S, MO L W, LU D Y. Effects of sodium aluminate on fleeting semi-dry carbonation and properties of steel slag powders in low concentration CO2 atmosphere[J]. Cement and Concrete Composites, 2024, 150: 105551. [111] JIANG Y, SHEN P L, POON C S. Improving the bonding capacity of recycled concrete aggregate by creating a reactive shell with aqueous carbonation[J]. Construction and Building Materials, 2022, 315: 125733. [112] LIU S H, SHEN P L, XUAN D X, et al. A comparison of liquid-solid and gas-solid accelerated carbonation for enhancement of recycled concrete aggregate[J]. Cement and Concrete Composites, 2021, 118: 103988. [113] TANG W, WU C R, MO Y Y, et al. A comparative study of dry and wet carbonation treatment on the recycled mortar powder: material characteristics, hydration kinetics and sustainability[J]. Construction and Building Materials, 2025, 490: 142505. [114] CHEN T Y, XUE Y, ZHAO X, et al. Effects of EDTA on the accelerated carbonation behavior of steel slag used as cementitious materials[J]. Journal of Material Cycles and Waste Management, 2023, 25(3): 1498-1508. [115] MAO Y G, HU X, DRISSI S, et al. Wet carbonation of recycled cement paste powder using a CO2-loaded monoethanolamine solvent as an internal CO2 source[J]. Resources, Conservation and Recycling, 2025, 212: 107901. [116] KIM W K, KIM S, JEON D, et al. Monoethanolamine-catalyzed CO2 mineralization in cementitious materials via in situ CO2 mixing and its synergy with cement hydration[J]. Cement and Concrete Composites, 2025, 163: 106218. [117] HU Z S, SHAO M H, LI H Y, et al. Synthesis of needle-like aragonite crystals in the presence of magnesium chloride and their application in papermaking[J]. Advanced Composite Materials, 2009, 18(4): 315-326. [118] GUTJAHR A, DABRINGHAUS H, LACMANN R. Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite II. The influence of divalent cation additives on the growth and dissolution rates[J]. Journal of Crystal Growth, 1996, 158(3): 310-315. [119] ZHU J P, CAO J Y, WANG H L, et al. Probe into the substitution preference of zinc ions and the mechanism of its influence on the carbonation properties of low calcium carbonatable binder[J]. Construction and Building Materials, 2025, 489: 142123. [120] LIU H W, LV C Y, ZHAO S X, et al. Ion-doped γ-C2S: clinker characteristics, carbonation products, and carbonation properties[J]. Construction and Building Materials, 2024, 438: 137033. [121] KHAN R I, ASHRAF W, OLEK J. Amino acids as performance-controlling additives in carbonation-activated cementitious materials[J]. Cement and Concrete Research, 2021, 147: 106501. [122] LUO J, KONG F T, MA X S. Role of aspartic acid in the synthesis of spherical vaterite by the Ca(OH)2-CO2 reaction[J]. Crystal Growth & Design, 2016, 16(2): 728-736. [123] KIM G, KIM S, KIM M J. Effect of sucrose on CO2 storage, vaterite content, and CaCO3 particle size in indirect carbonation using seawater[J]. Journal of CO2 Utilization, 2022, 57: 101894. [124] SHEN P L, GU Z J, LU J X, et al. Preparation of reactive urchin-like recycled concrete aggregate by wet carbonation: towards improving the bonding capability of the interfacial transition zone in recycled aggregate concrete[J]. Cement and Concrete Composites, 2023, 143: 105235. [125] JIANG L, MA Z H, GU Z J, et al. Impregnate carbonation: CO2-guided in situ growth of robust superhydrophobic structures on concrete surfaces[J]. Advanced Materials, 2024, 36(40): 2405492. [126] JIANG Y, MA Z H, GU Z J, et al. A novel approach for improving aqueous carbonation kinetics with CO2 micro- and nano-bubbles[J]. Chemical Engineering Journal, 2024, 500: 157363. [127] SUZUKI T, KAWAI T, KAMIJIMA Y, et al. Application of ultrafine bubbles for enhanced carbonation of municipal solid waste incineration ash during direct aqueous carbonation[J]. Next Sustainability, 2024, 3: 100020. [128] LIU W H, CHEN Q C, XU T F. A low-cost support derived steel slag with amine modification for post-combustion CO2 capture[J]. Korean Journal of Chemical Engineering, 2025, 42(8): 1587-1598. [129] JI L, ZHENG X, ZHANG L, et al. Feasibility and mechanism of an amine-looping process for efficient CO2 mineralization using alkaline ashes[J]. Chemical Engineering Journal, 2022, 430: 133118. [130] SUN P X, JIA Y, QI C J, et al. Synergistic promoting of CO2 absorption-mineralization by MEA-carbide slag[J]. Separation and Purification Technology, 2024, 341: 126899. [131] ZHAO Y L, CUI K, HE J H, et al. Highly reactive carbonated recycled concrete fines prepared via mechanochemical carbonation: influence on the early performance of cement composites[J]. Cement and Concrete Composites, 2024, 152: 105636. [132] CUI K, ZHENG Y, ZHAO Y L, et al. Development of in situ highly active calcium carbonate through anhydrous carbonation of OPC: effect on hydration and properties of cement composites[J]. Cement and Concrete Research, 2025, 197: 107980. [133] SONG Q F, CHAI S Y W, LING T C. Role of calcium compounds in BOFS on phase evolution and microstructural changes upon high-gravity carbonation[J]. Cement and Concrete Research, 2025, 195: 107913. [134] SONG Q F, LI X D, ZHAN B J, et al. High-gravity intensified carbonation of larger steel slag particles: dual-path CO2 mineralization and valorization in sustainable construction materials[J]. Journal of Environmental Chemical Engineering, 2025, 13(3): 117004. [135] CHEN J, ZHU W C, SHEN Y Z, et al. Resource utilization of ultrasonic carbonated MSWI fly ash as cement aggregates: compressive strength, heavy metal immobilization, and environmental-economic analysis[J]. Chemical Engineering Journal, 2023, 472: 144860. [136] CHOI J, JEONG S, JANG S, et al. Electrochemical mineral carbonation: a sustainable approach to CO2 capture and utilization[J]. Carbon Capture Science & Technology, 2025, 16: 100444. [137] ZHAO Y L, ZHENG Y, MA Z H, et al. Mechanochemical carbonation of recycled concrete fines: towards a high-efficiency recycling and CO2 sequestration[J]. Cement and Concrete Research, 2024, 185: 107654. [138] WILCOX S M, MULLIGAN C N, NECULITA C M. Mineral carbonation for carbon sequestration: a case for MCP and MICP[J]. International Journal of Molecular Sciences, 2025, 26(5): 2230. [139] CUI J L, XIE S H, JIA G H, et al. Utilizing microbial-induced carbonate precipitation technology and carbonation for recycling municipal solid waste incineration fly ash in the production of bricks[J]. Construction and Building Materials, 2024, 420: 135458. [140] ARNEPALLI S K K, GONDU V R, CHINTHALA S. Sustainable improvement of granite sludge dust properties using microbially induced carbonate precipitation (MICP): strength enhancement, erosion prevention, and dust mitigation[J]. Environmental Science and Pollution Research International, 2025. [141] DUAN Y T, YUAN Q, YU C Q, et al. A large-scale study on solidification of gold tailings based on microbially induced carbonate precipitation (MICP)[J]. Biogeotechnics, 2025, 3(3): 100164. [142] FURKO M, BALÁZSI K, BALÁZSI C. Calcium phosphate loaded biopolymer composites: a comprehensive review on the most recent progress and promising trends[J]. Coatings, 2023, 13(2): 360. [143] ZHAO S X, LIU Z C, MU Y D, et al. Effect of chitosan on the carbonation behavior of γ-C2S[J]. Cement and Concrete Composites, 2020, 111: 103637. [144] KIM Y Y, CARLONI J D, DEMARCHI B, et al. Tuning hardness in calcite by incorporation of amino acids[J]. Nature Materials, 2016, 15(8): 903-910. [145] SHE W, WANG X H, MIAO C W, et al. Biomimetic superhydrophobic surface of concrete: topographic and chemical modification assembly by direct spray[J]. Construction and Building Materials, 2018, 181: 347-357. [146] WANG Y L, LIU J Y, SHI T J, et al. Synthesis, characterization and mechanism of porous spherical nesquehonite by CO2 biomimetic mineralization[J]. Advanced Powder Technology, 2022, 33(12): 103856. [147] PAN Y, ZHAO X, SHENG Y, et al. Biomimetic synthesis of dendrite-shaped aragonite particles with single-crystal feature by polyacrylic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297(1/2/3): 198-202. [148] VAN ROIJEN E, SETHARES K, KENDALL A, et al. The climate benefits from cement carbonation are being overestimated[J]. Nature Communications, 2024, 15(1): 4848. [149] TORRENTI J M, AMIRI O, BARNES-DAVIN L, et al. The FastCarb project: taking advantage of the accelerated carbonation of recycled concrete aggregates[J]. Case Studies in Construction Materials, 2022, 17: e01349. [150] PRENTICE D, RAAB S, SANT G. Field demonstration of the ReversaTM mineral carbonation process using coal and natural gas flue gas streams at the National Carbon Capture Center, AL[M/OL]. United States, 2022 (2022-05-18)[2025-07-15]. https://www.nationalcarboncapturecenter.com/wp-content/uploads/2021/12/UCLA-CarbonBuilt-Reversa-technology-demonstration-at-NCCC-2021-revised.pdf. [151] BEUMELBURG C. Advancing circularity: heidelberg materials launches first industrial scale facility for enforced carbonation in Poland[M/OL]. Germany, 2025 (2025-07-09)[2025-07-15]. https://www.heidelbergmaterials.com/en/pr-2025-07-09. |
| [1] | 李相国, 史湘琴, 安万东, 龚志雄, 张呈山, 吕阳. 铁相调控对高贝利特铁铝酸盐水泥性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3127-3136. |
| [2] | 叶纪盛, 马英, 李淯伟, 邰安, 王家豪. 早期CO2养护对钢渣固废胶凝材料性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3326-3336. |
| [3] | 李万润, 姚建兵, 赵文海, 高浙枫, 杜永峰, 朱文轩. 掺风电叶片固废料3D打印混凝土的打印性能与力学性能试验研究[J]. 硅酸盐通报, 2025, 44(8): 2801-2813. |
| [4] | 李康丽, 卢晓磊, 朱江, 姜葱葱, 张丽娜, 程新. 工业固废中重金属离子浸出与固化/稳定化[J]. 硅酸盐通报, 2025, 44(8): 2856-2872. |
| [5] | 颜婉滢, 王东星, 聂利文. 全工业固废基高贝利特硫铝酸盐水泥熟料的制备与矿物形成微观机理[J]. 硅酸盐通报, 2025, 44(8): 2955-2964. |
| [6] | 向玮衡, 刘俊, 胡成, 陈平, 马晓鹏, 彭莹杰. 细度和水胶比对精炼钢渣负碳胶结料碳矿化性能的影响[J]. 硅酸盐通报, 2025, 44(7): 2549-2556. |
| [7] | 姚钧天, 杨建宇, 杨伟军, 金振洲, 贺智慧, 何建刚. 工业固废协同固化红砂岩土试验研究[J]. 硅酸盐通报, 2025, 44(7): 2730-2740. |
| [8] | 崔祎菲, 刘梦华, 张益聪, 艾威侠, 徐诺. 超高性能碱激发混凝土的性能及环境影响研究[J]. 硅酸盐通报, 2025, 44(5): 1689-1702. |
| [9] | 张会芳, 陈洁, 王磊, 李晓辰, 李金珠, 刘凯宏, 曹慧, 任泽江, 刘哲颖. 酸激发剂对固废材料及其灌浆料性能的影响[J]. 硅酸盐通报, 2025, 44(5): 1788-1802. |
| [10] | 马召林, 明阳, 李文俊, 任昊, 刘永道, 田唯, 张国志, 陈飞翔, 窦广元, 范志宏. 多元固废协同制备超细高活性矿物掺合料及性能研究[J]. 硅酸盐通报, 2025, 44(5): 1824-1833. |
| [11] | 郭正旺, 肖海平, 张绪钦, 李岩, 李宇. 低碳窑渣固废陶瓷烧制过程无机矿相演变及重金属固化机理[J]. 硅酸盐通报, 2025, 44(4): 1566-1573. |
| [12] | 张增起, 李思义, 刘晓明, 马善亮, 邵阳, 陈杰, 杜伟杰. 多源固废协同制备磷酸镁水泥研究进展[J]. 硅酸盐通报, 2025, 44(4): 1191-1207. |
| [13] | 任才富, 王栋民, 房奎圳, 王吉祥, 张信龙, 陈伟. 固废基注浆材料的性能与硬化机理研究[J]. 硅酸盐通报, 2025, 44(4): 1328-1336. |
| [14] | 余沁昕, 刘问. 混凝土用生物炭火山灰活性研究综述[J]. 硅酸盐通报, 2025, 44(4): 1243-1254. |
| [15] | 查文华, 徐源歆, 许涛, 谭雪剑, 张晓丽. 基于RSM的玄武岩纤维固废混凝土力学性能优化研究[J]. 硅酸盐通报, 2025, 44(4): 1408-1419. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||