[1] FONTE R, XYDIS G. Wind turbine blade recycling: an evaluation of the European market potential for recycled composite materials[J]. Journal of Environmental Management, 2021, 287: 112269. [2] YAZDANBAKHSH A, BANK L C, RIEDER K A, et al. Concrete with discrete slender elements from mechanically recycled wind turbine blades[J]. Resources, Conservation and Recycling, 2018, 128: 11-21. [3] TAZI N, KIM J, BOUZIDI Y, et al. Waste and material flow analysis in the end-of-life wind energy system[J]. Resources, Conservation and Recycling, 2019, 145: 199-207. [4] LARSEN K. Recycling wind turbine blades[J]. Renewable Energy Focus, 2009, 9(7): 70-73. [5] HAIDER M M, NASSIRI S, ENGLUND K, et al. Exploratory study of flexural performance of mechanically recycled glass fiber reinforced polymer shreds as reinforcement in cement mortar[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(10): 1254-1267. [6] PŁAWECKA K, PRZYBYŁA J, KORNIEJENKO K, et al. Recycling of mechanically ground wind turbine blades as filler in geopolymer composite[J]. Materials, 2021, 14(21): 6539. [7] RODIN H, NASSIRI S, ENGLUND K, et al. Recycled glass fiber reinforced polymer composites incorporated in mortar for improved mechanical performance[J]. Construction and Building Materials, 2018, 187: 738-751. [8] ZHOU B Y, ZHANG M, MA G W. An experimental study on 3D printed concrete reinforced with fibers recycled from wind turbine blades[J]. Journal of Building Engineering, 2024, 91: 109578. [9] 孙晓燕, 叶柏兴, 王海龙, 等. 3D打印混凝土材料与结构增强技术研究进展[J]. 硅酸盐学报, 2021, 49(5): 878-886. SUN X Y, YE B X, WANG H L, et al. Recent development on reinforcing technology of 3D printing concrete materials and structure[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 878-886 (in Chinese). [10] HOU S D, DUAN Z H, XIAO J Z, et al. A review of 3D printed concrete: performance requirements, testing measurements and mix design[J]. Construction and Building Materials, 2021, 273: 121745. [11] KHAN M S, SANCHEZ F, ZHOU H Y. 3-D printing of concrete: beyond horizons[J]. Cement and Concrete Research, 2020, 133: 106070. [12] WENG Y W, LI M Y, RUAN S Q, et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach[J]. Journal of Cleaner Production, 2020, 261: 121245. [13] KREIGER E L, KREIGER M A, CASE M P. Development of the construction processes for reinforced additively constructed concrete[J]. Additive Manufacturing, 2019, 28: 39-49. [14] LIM S, BUSWELL R A, LE T T, et al. Developments in construction-scale additive manufacturing processes[J]. Automation in Construction, 2012, 21: 262-268. [15] 李维红, 常西栋, 王 乾, 等. 矿物掺合料对3D打印水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3101-3107. LI W H, CHANG X D, WANG Q, et al. Effect of mineral admixture on properties of 3D printing cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3101-3107 (in Chinese). [16] 张云升, 张 宇, 陈逸东. 综论3D打印混凝土: 成型系统·可打印性能·流变性能·硬化性能·耐久性能·标准规范·工程应用[J]. 中国建材科技, 2021, 30(3): 8-17. ZHANG Y S, ZHANG Y, CHEN Y D. Research progress of 3D printed concrete: processing system·printability·rheological property·harden property·durability·standard·applications[J]. China Building Materials Science & Technology, 2021, 30(3): 8-17 (in Chinese). [17] CHIA K S, ZHANG M H. Effect of chemical admixtures on rheological parameters and stability of fresh lightweight aggregate concrete[J]. Magazine of Concrete Research, 2004, 56(8): 465-473. [18] PERRET S, PALARDY D, BALLIVY G. Rheological behavior and setting time of microfine cement-based grouts[J]. ACI Materials Journal, 2000, 97(4): 472-478. [19] FERRARIS C F, OBLA K H, HILL R. The influence of mineral admixtures on the rheology of cement paste and concrete[J]. Cement and Concrete Research, 2001, 31(2): 245-255. [20] MUTHUKRISHNAN S, RAMAKRISHNAN S, SANJAYAN J. Technologies for improving buildability in 3D concrete printing[J]. Cement and Concrete Composites, 2021, 122: 104144. [21] MECHTCHERINE V, BOS F P, PERROT A, et al. Extrusion-based additive manufacturing with cement-based materials-Production steps, processes, and their underlying physics: a review[J]. Cement and Concrete Research, 2020, 132: 106037. [22] 张 超, 邓智聪, 马 蕾, 等. 3D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6): 1769-1795. ZHANG C, DENG Z C, MA L, et al. Research progress and application of 3D printing concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1769-1795 (in Chinese). [23] 张云升, 陈逸东, 刘 诚. 含粗骨料3D打印混凝土可打印、力学、收缩性能与碳排放分析[J]. 硅酸盐学报, 2023, 51(9): 2153-2165. ZHANG Y S, CHEN Y D, LIU C. Printability, mechanics, shrinkage and carbon emission analysis of 3D printed concrete with coarse aggregates[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2153-2165 (in Chinese). [24] PAN Z F, SI D D, TAO J H, et al. Compressive behavior of 3D printed concrete with different printing paths and concrete ages[J]. Case Studies in Construction Materials, 2023, 18: e01949. [25] PANDA B, PAUL S C, MOHAMED N A N, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108-116. [26] 彭少斌, 管学茂. 3D打印煤矸石砂浆流变性能、打印性能与力学性能研究[J]. 硅酸盐通报, 2024, 43(5): 1623-1632. PENG S B, GUAN X M. Research on rheological properties, printability and mechanical properties of 3D printing coal gangue mortar[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1623-1632 (in Chinese). [27] LIU P, MENG F R, BARLOW C Y. Wind turbine blade end-of-life options: an eco-audit comparison[J]. Journal of Cleaner Production, 2019, 212: 1268-1281. [28] XIAO J Z, LV Z Y, DUAN Z H, et al. Pore structure characteristics, modulation and its effect on concrete properties: a review[J]. Construction and Building Materials, 2023, 397: 132430. [29] 冯 奇, 刘光明, 巴恒静. 颗粒级配对水泥基材料有害孔隙率的影响[J]. 同济大学学报(自然科学版), 2004, 32(9): 1168-1172. FENG Q, LIU G M, BA H J. Relation of grain grading and deleterious porosity of cement-based materials[J]. Journal of Tongji University, 2004, 32(9): 1168-1172 (in Chinese). [30] STOVALL T, DE LARRARD F, BUIL M. Linear packing density model of grain mixtures[J]. Powder Technology, 1986, 48(1): 1-12. |