硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (8): 2856-2872.DOI: 10.16552/j.cnki.issn1001-1625.2025.0004
李康丽1,2, 卢晓磊1,2, 朱江1,2, 姜葱葱1,2, 张丽娜1,2, 程新1,2
收稿日期:2025-01-02
修订日期:2025-01-30
出版日期:2025-08-15
发布日期:2025-08-22
通信作者:
张丽娜,博士,副教授。E-mail:mse_zhangln@ujn.edu.cn程 新,博士,教授。E-mail:chengxin@ujn.edu.cn
作者简介:李康丽(1999—),女,硕士研究生。主要从事固废中重金属固化/稳定化的研究。E-mail:lkl5552022@163.com
基金资助:LI Kangli1,2, LU Xiaolei1,2, ZHU Jiang1,2, JIANG Congcong1,2, ZHANG Lina1,2, CHENG Xin1,2
Received:2025-01-02
Revised:2025-01-30
Published:2025-08-15
Online:2025-08-22
摘要: 工业固废中重金属元素存在种类多、区域特性明显、价态毒性多变、迁移转化形式多样、状态不稳定等特征。重金属离子的浸出是制约工业固废资源化利用的关键问题。本文综述了国内外主要工业固废中重金属离子的浸出方法及浸出机理,对比了优缺点,并重点介绍了修复重金属污染常用的固化/稳定化方法及作用机理,综述了影响重金属离子固化/稳定化的主要因素,最后对工业固废中重金属检测及固化/稳定化进行展望,期望为探明重金属离子浸出行为及固化/稳定化特性与作用机制提供参考,为实现工业固废高效安全资源化利用提供借鉴。
中图分类号:
李康丽, 卢晓磊, 朱江, 姜葱葱, 张丽娜, 程新. 工业固废中重金属离子浸出与固化/稳定化[J]. 硅酸盐通报, 2025, 44(8): 2856-2872.
LI Kangli, LU Xiaolei, ZHU Jiang, JIANG Congcong, ZHANG Lina, CHENG Xin. Leaching and Solidification/Stabilization of Heavy Metal Ions in Industrial Solid Wastes[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2856-2872.
| [1] 中商产业研究院. 2024—2029年中国固废处理市场调查与行业前景预测专题研究报告[R/OL]. (2024-10-09) [2025-02-27]. https://www.askci.com/reports/. Askci Consulting Co., Ltd. 2024—2029 China solid waste treatment market survey and industry prospects forecast special research report[R/OL]. (2024-10-09) [2025-02-27]. https://www.askci.com/reports/ (in Chinese). [2] 中华人民共和国生态环境部. 2022年中国生态环境状况公报(摘录)[J]. 环境保护, 2023, 51(增刊2): 64-81. Ministry of Ecological Environment of the People's Republic of China. Bulletin on ecological environment in China in 2022 (excerpt)[J]. Environmental Protection, 2023, 51(supplement 2): 64-81 (in Chinese). [3] 牛 磊, 郑春丽. 生物炭协同微生物矿化技术修复复合重金属污染农田土壤[J]. 有色金属工程, 2023, 13(11): 141-155. NIU L, ZHENG C L. Remediation of farmland soil polluted by compound heavy metals by biochar combined with microbial mineralization[J]. Nonferrous Metals Engineering, 2023, 13(11): 141-155 (in Chinese). [4] 李卫华, 吴寅凯, 孙英杰, 等. 垃圾焚烧飞灰重金属毒性浸出评价方法研究进展[J]. 化工进展, 2023, 42(5): 2666-2677. LI W H, WU Y K, SUN Y J, et al. Progress on evaluation methods for toxic leaching of heavy metals from MSW incineration fly ash[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2666-2677 (in Chinese). [5] DUAN Y, LIU X B, HONG W J, et al. Leaching behavior and comprehensive toxicity evaluation of heavy metals in MSWI fly ash from grate and fluidized bed incinerators using various leaching methods: a comparative study[J]. Science of the Total Environment, 2024, 914: 169595. [6] JUKIĆ M, ĆURKOVIĆ L, ABARIĆ J, et al. Fractionation of heavy metals in fly ash from wood biomass using the BCR sequential extraction procedure[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99(4): 524-529. [7] 曾映达, 程银汉, 瞿广飞, 等. 固体废物中重金属的固化/稳定化技术研究进展[J]. 环境化学, 2023, 42(6): 2032-2047. ZENG Y D, CHENG Y H, QU G F, et al. Review on solidification/stabilization of heavy metals in solid waste[J]. Environmental Chemistry, 2023, 42(6): 2032-2047 (in Chinese). [8] JIANG R X, WANG Z J. Performance and heavy metal analysis of graphite tailings cured using cementitious materials[J]. Buildings, 2024, 14(2): 537. [9] DERMATAS D, MENG X G. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology, 2003, 70(3/4): 377-394. [10] 刘允全, 单慧媚, 曾春芽. 铁改性氧化石墨烯壳聚糖对重金属的去除效果[J]. 环境工程学报, 2022, 16(10): 3167-3180. LIU Y Q, SHAN H M, ZENG C Y. Heavy metals removal by iron modified graphene oxide chitosan[J]. Chinese Journal of Environmental Engineering, 2022, 16(10): 3167-3180 (in Chinese). [11] WANG S Y, LIU B, ZHANG Q, et al. Application of geopolymers for treatment of industrial solid waste containing heavy metals: state-of-the-art review[J]. Journal of Cleaner Production, 2023, 390: 136053. [12] 田志君, 赵云峰, 梁凯旋, 等. 北京市某金尾矿库周边土壤潜在有毒元素(PTEs)空间分布及风险评价[J/OL]. 中国地质, 2023: 1-15 (2023-11-07) [2025-01-02]. https://kns.cnki.net/kcms/detail/11.1167.P.20231106.1610.006.html. TIAN Z J, ZHAO Y F, LIANG K X, et al. Spatial distribution and risk assessment of potential toxic elements (PTEs) in soil around a gold tailings pond in Beijing[J/OL]. Geology in China, 2023: 1-15 (2023-11-07) [2025-01-02]. https://kns.cnki.net/kcms/detail/11.1167.P.20231106.1610.006.html (in Chinese). [13] ZUCHA W, WEIBEL G, WOLFFERS M, et al. Inventory of MSWI fly ash in Switzerland: heavy metal recovery potential and their properties for acid leaching[J]. Processes, 2020, 8(12): 1668. [14] SUSHIL S, BATRA V S. Analysis of fly ash heavy metal content and disposal in three thermal power plants in India[J]. Fuel, 2006, 85(17/18): 2676-2679. [15] 张振国, 王 月, 陈军典, 等. 冀东代表性铁尾矿库表层重金属含量特征及生态风险评价[J]. 金属矿山, 2024(7): 231-240. ZHANG Z G, WANG Y, CHEN J D, et al. Characterization of surface heavy metal content and ecological risk evaluation of representative iron tailing ponds in eastern Hebei Province[J]. Metal Mine, 2024(7): 231-240 (in Chinese). [16] 王宏捷, 仇小东, 李 锋, 等. 高聚物稳定铁尾矿在公路基层中的应用研究[J]. 黑龙江交通科技, 2023, 46(8): 47-49. WANG H J, QIU X D, LI F, et al. Research on the application of polymer stabilized iron tailings in road base[J]. Communications Science and Technology Heilongjiang, 2023, 46(8): 47-49 (in Chinese). [17] ZHANG X, YANG H H, CUI Z J. Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings[J]. Journal of Cleaner Production, 2018, 172: 475-480. [18] ARAB F, MULLIGAN C N. An eco-friendly method for heavy metal removal from mine tailings[J]. Environmental Science and Pollution Research, 2018, 25(16): 16202-16216. [19] NGOLE-JEME V M, FANTKE P. Ecological and human health risks associated with abandoned gold mine tailings contaminated soil[J]. PLoS One, 2017, 12(2): e0172517. [20] LI M S, YANG S X. Heavy metal contamination in soils and phytoaccumulation in a manganese mine wasteland, South China[J]. Air, Soil and Water Research, 2008, 1: 2041. [21] GEVORGYAN G, GHAZARYAN K, DERDZYAN T H. Heavy metal pollution of the soils around the mining area near shamlugh town (Armenia) and related risks to the environment[J]. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 2015, 9: 734-740. [22] LUO G F, HAN Z W, XIONG J, et al. Heavy metal pollution and ecological risk assessment of tailings in the Qinglong Dachang antimony mine, China[J]. Environmental Science and Pollution Research, 2021, 28(25): 33491-33504. [23] 何银苹. 岩溶地区典型锑矿尾矿库尾砂重金属释放过程机制[D]. 贵阳: 贵州大学, 2021. HE Y P. Mechanism of heavy metal release from tailings of typical antimony mine in Karst area[D]. Guiyang: Guizhou University, 2021 (in Chinese). [24] 聂霄悍, 雷学文, 刘 磊, 等. 堆存陈化中电解锰渣重金属形态及环境风险演化[J]. 中国环境科学, 2024, 44(1): 242-250. NIE X H, LEI X W, LIU L, et al. In-situ stacking and aging of electrolytic manganese residue: speciation of heavy metals and environmental risk evolution[J]. China Environmental Science, 2024, 44(1): 242-250 (in Chinese). [25] 杨 帆, 喻君保, 武欣怡, 等. 黔西南露天煤矿废弃地重金属污染特征研究[J]. 西南林业大学学报(自然科学), 2024, 44(2): 101-110. YANG F, YU J B, WU X Y, et al. The characteristics of heavy metal pollution in open-pit coal mining wasteland in southwest Guizhou[J]. Journal of Southwest Forestry University (Natural Sciences), 2024, 44(2): 101-110 (in Chinese). [26] GANNE P, CAPPUYNS V, VERVOORT A, et al. Leachability of heavy metals and arsenic from slags of metal extraction industry at Angleur (eastern Belgium)[J]. Science of the Total Environment, 2006, 356(1/2/3): 69-85. [27] ALEKSEENKO V A, BECH J, ALEKSEENKO A V, et al. Environmental impact of disposal of coal mining wastes on soils and plants in Rostov Oblast, Russia[J]. Journal of Geochemical Exploration, 2018, 184: 261-270. [28] 毛礼鑫, 朱士飞, 吴 蒙, 等. 燃煤固废重金属分布特征与环境风险[J]. 中国科技论文, 2023, 18(9): 1028-1034. MAO L X, ZHU S F, WU M, et al. Distribution and environmental risk assessment of heavy metals in coal-fired products of power plants[J]. China Sciencepaper, 2023, 18(9): 1028-1034 (in Chinese). [29] WEI X, HAN B P, et al. Physicochemical properties and heavy metals leachability of fly ash from coal-fired power plant[J]. International Journal of Mining Science and Technology, 2012, 22(3): 405-409. [30] 崔宇龙. 基于pH值变化的赤泥中元素浸出特性及控制机制研究[D]. 成都: 西南交通大学, 2019. CUI Y L. Study on leaching characteristics and control mechanism of elements in red mud based on pH change[D]. Chengdu: Southwest Jiaotong University, 2019 (in Chinese). [31] 杨永琼, 张 耀, 李晓燕. 赤泥中重金属元素的浸出性与结合形态[J]. 化工环保, 2018, 38(2): 227-230. YANG Y Q, ZHANG Y, LI X Y. Leachability and binding states of heavy metals in red mud[J]. Environmental Protection of Chemical Industry, 2018, 38(2): 227-230 (in Chinese). [32] KUTLE A, NA >>K, OBHO >>A J, et al. Assessment of environmental condition in the waste disposal site of an ex-alumina plant near Obrovac, Croatia[J]. X-Ray Spectrometry, 2004, 33(1): 39-45. [33] CASTALDI P, SILVETTI M, SANTONA L, et al. XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals[J]. Clays and Clay Minerals, 2008, 56(4): 461-469. [34] 王志峰. 砷元素的形态分析及其对赤子爱胜蚓(Eisenia fetida)的生态毒性研究[D]. 济南: 山东大学, 2017: 98-99. WANG Z F. Speciation analysis of arsenic and its ecological toxicity to Eisenia fetida[D]. Jinan: Shandong University, 2017: 98-99 (in Chinese). [35] 彭叶棉. 外源六价铬在土壤中的老化动力学模型及小麦毒性效应[D]. 广州: 中国科学院广州地球化学研究所, 2020. PENG Y M. Aging kinetic model of exogenous hexavalent chromium in soil and its toxic effect on wheat[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2020 (in Chinese). [36] LU S B, XIE F H, ZHANG X L, et al. Health evaluation on migration and distribution of heavy metal Cd after reclaimed water drip irrigation[J]. Environmental Geochemistry and Health, 2020, 42(3): 841-848. [37] 周德杰. 危险废物中毒性组分浸出特性和浸出方法研究[D]. 济南: 山东大学, 2006: 6. ZHOU D J. Study on leaching characteristics and leaching methods of toxic components in hazardous waste[D]. Jinan: Shandong University, 2006: 6 (in Chinese). [38] 余其俊, 白瑞英, 曾小星, 等. 水泥、粉煤灰及其硬化体中Cr(Ⅵ)溶出条件与其影响因素[J]. 硅酸盐学报, 2007, 35(8): 1115-1124. YU Q J, BAI R Y, ZENG X X, et al. Leaching test conditions for Cr(Ⅵ) in cement, fly ash and cement solidified fly ash and their influencing factors[J]. Journal of the Chinese Ceramic Society, 2007, 35(8): 1115-1124 (in Chinese). [39] SUT-LOHMANN M, RAMEZANY S, KÄSTNER F, et al. Using modified Tessier sequential extraction to specify potentially toxic metals at a former sewage farm[J]. Journal of Environmental Management, 2022, 304: 114229. [40] NEN. Leaching characteristics of moulded or monolithic building and waste materials: NEN 7375: 2004[S]. Delft: NEN, 2004. [41] 刘 博, 梁宇廷, 孟棒棒, 等. 电解锰渣-赤泥路面砖中锰的浸出行为研究及长期释放预测[J]. 环境科学研究, 2023, 36(10): 2000-2010. LIU B, LIANG Y T, MENG B B, et al. Study on leaching behavior of manganese in electrolytic manganese residue and red mud paving bricks and long-term release prediction[J]. Research of Environmental Sciences, 2023, 36(10): 2000-2010 (in Chinese). [42] 田梦莹. 烧结砖中重金属释放机理研究[D]. 杨凌: 西北农林科技大学, 2014: 34-36. TIAN M Y. Study on release mechanism of heavy metals in sintered bricks[D]. Yangling: Northwest A & F University, 2014: 34-36 (in Chinese). [43] VAN DER SLOOT H A. Leaching behaviour of waste and stabilized waste materials, characterization for environmental assessment purposes[J]. Waste Management & Research, 1990, 8(3): 215-228. [44] VAN DER SLOOT H A, COMANS R N J, HJELMAR O. Similarities in the leaching behaviour of trace contaminants from waste, stabilized waste, construction materials and soils[J]. Science of the Total Environment, 1996, 178(1/2/3): 111-126. [45] VAN DER SLOOT H A. Systematic leaching behaviour of trace elements from construction materials and waste materials[M]//Waste Materials in Construction. Amsterdam: Elsevier, 1991: 19-36. [46] TIRUTA-BARNA L, IMYIM A, BARNA R. Long-term prediction of the leaching behavior of pollutants from solidified wastes[J]. Advances in Environmental Research, 2004, 8(3/4): 697-711. [47] 梁慧芝, 郭朝晖, 张云霞, 等. 含砷尾矿中砷铊矿相特征及其释放机制[J]. 地学前缘, 2024, 31(2): 20-30. LIANG H Z, GUO Z H, ZHANG Y X, et al. Mineralogical characteristics and release mechanism of arsenicthallium from As-bearing tailings[J]. Earth Science Frontiers, 2024, 31(2): 20-30 (in Chinese). [48] LIU Q, WANG X N, GAO M, et al. Heavy metal leaching behaviour and long-term environmental risk assessment of cement-solidified municipal solid waste incineration fly ash in sanitary landfill[J]. Chemosphere, 2022, 300: 134571. [49] HAN C, WANG W, XIE F, et al. Mechanism and kinetics of mercuric sulfide leaching with cuprous-thiosulfate solutions[J]. Separation and Purification Technology, 2017, 177: 223-232. [50] 王云燕, 何紫彤, 唐巾尧, 等. 铜冶炼脱硫石膏渣的环境稳定性与重金属释放机制[J]. 中南大学学报(自然科学版), 2023, 54(2): 562-576. WANG Y Y, HE Z T, TANG J Y, et al. Long-term environmental stability and heavy metals release mechanism of desulfurized gypsum sludge from copper smelter[J]. Journal of Central South University (Science and Technology), 2023, 54(2): 562-576 (in Chinese). [51] PATEL K M, DEVATHA C P. Investigation on leaching behaviour of toxic metals from biomedical ash and its controlling mechanism[J]. Environmental Science and Pollution Research, 2019, 26(6): 6191-6198. [52] 眭 滢, 曾楚雄, 王永杰, 等. 磷石膏中金属杂质铝镁锶的浸出动力学[J]. 矿业工程研究, 2022, 37(2): 68-74. SUI Y, ZENG C X, WANG Y J, et al. Leaching kinetics of metallic impurities Al, Mg, Sr in phosphogypsum[J]. Mineral Engineering Research, 2022, 37(2): 68-74 (in Chinese). [53] XU Z P, GUO X Y, LI D, et al. Leaching kinetics of tellurium-bearing materials in alkaline sulfide solutions[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 41(1): 1-10. [54] NIKFAR S, PARSA A, BAHALOO-HOREH N, et al. Enhanced bioleaching of Cr and Ni from a chromium-rich electroplating sludge using the filtrated culture of Aspergillus Niger[J]. Journal of Cleaner Production, 2020, 264: 121622. [55] 皇志威, 苏向东, 张建刚, 等. 赤泥-磷石膏复合材料中重金属浸出研究[J]. 无机盐工业, 2022, 54(10): 133-140. HUANG Z W, SU X D, ZHANG J G, et al. Study on leaching of heavy metals from red mud-phosphogypsum composite materials[J]. Inorganic Chemicals Industry, 2022, 54(10): 133-140 (in Chinese). [56] 牛福生, 卜梓恒, 张晋霞, 等. 超声强化含锌尘泥浸出机理及动力学[J]. 有色金属(冶炼部分), 2023(7): 15-21. NIU F S, BU Z H, ZHANG J X, et al. Mechanisms and kinetics of ultrasonic enhanced leaching of zinc-containing dust[J]. Nonferrous Metals (Extractive Metallurgy), 2023(7): 15-21 (in Chinese). [57] MAITI A, BASU J K, DE S. Desorption kinetics and leaching study of arsenic from arsenite/arsenate-loaded Natural Laterite[J]. International Journal of Environmental Technology and Management, 2010, 12(2/3/4): 294. [58] 赵舒洁. 铅锌尾矿的固化/稳定化机制及其固化体的环境稳定性研究[D]. 重庆: 重庆大学, 2022: 51. ZHAO S J. Study on solidification/stabilization mechanism of lead-zinc tailings and environmental stability of its solidified body[D]. Chongqing: Chongqing University, 2022: 51 (in Chinese). [59] 陈玥如, 高文艳, 陈虹任, 等. 场地重金属污染土壤固化及 MICP 技术研究进展[J].环境科学, 2024, 45(5): 2939-2951. CHEN Y R, GAO W Y, CHEN H R, et al. Research progress on solidification and MICP remediation of soils in heavy metal contaminated site[J]. Environmental Science, 2024, 45(5): 2939-2951 (in Chinese). [60] 吴晓芳, 刘伟江, 周宏磊, 等. 铅锌废石尾矿的重金属固化/稳定化药剂研究[J]. 环境污染与防治, 2022, 44(12): 1563-1566+1572. WU X F, LIU W J, ZHOU H L, et al. Study on solidification/stabilization agent of heavy metals in lead-zinc waste stone and tailing[J]. Environmental Pollution & Control, 2022, 44(12): 1563-1566+1572 (in Chinese). [61] CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilisation: a review[J]. Waste Management, 2009, 29(1): 390-403. [62] 李福恒. 水泥-石灰固化/稳定化砷污染土效果试验研究[D]. 广州: 华南理工大学, 2022: 78-79. LI F H. Experimental study on the effect of cement-lime solidification/stabilization of arsenic contaminated soil[D]. Guangzhou: South China University of Technology, 2022: 78-79 (in Chinese). [63] WANG S C, WANG F, CHE J L, et al. Study on the performance and mechanism of cement solidified desulfurization manganese residue[J]. Materials, 2023, 16(11): 4184. [64] CHOI H, KANG H J, SONG M S, et al. Solidification of heavy metal ions using magnesia-phosphate cement[J]. Journal of the Korean Ceramic Society, 2011, 48(1): 20-25. [65] CALGARO L, CONTESSI S, BONETTO A, et al. Calcium aluminate cement as an alternative to ordinary Portland cement for the remediation of heavy metals contaminated soil: mechanisms and performance[J]. Journal of Soils and Sediments, 2021, 21(4): 1755-1768. [66] LIU L J, WANG L L, SU S, et al. Leaching behavior of vanadium from spent SCR catalyst and its immobilization in cement-based solidification/stabilization with sulfurizing agent[J]. Fuel, 2019, 243: 406-412. [67] 张晨霞. 新型磷酸镁水泥固化挥发型重金属锌的研究[J]. 无机盐工业, 2020, 52(5): 71-74. ZHANG C X. Study on new type magnesium phosphate cement solidification of volatile heavy metal Zn[J]. Inorganic Chemicals Industry, 2020, 52(5): 71-74 (in Chinese). [68] BAEK J W, MALLAMPATI S R, PARK H S. Novel synthesis and applications of Thiomer solidification for heavy metals immobilization in hazardous ASR/ISW thermal residue[J]. Waste Management, 2016, 49: 181-187. [69] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: principles and applicability[J]. Science of the Total Environment, 2018, 633(8): 206-219. [70] ISLAM M S, KORMOKER T, IDRIS A M, et al. Plant-microbe-metal interactions for heavy metal bioremediation: a review[J]. Crop and Pasture Science, 2022, 73(2): 181-201. [71] YU X N, JIANG N J, YANG Y, et al. Heavy metals remediation through bio-solidification: potential application in environmental geotechnics[J]. Ecotoxicology and Environmental Safety, 2023, 263: 115305. [72] LI L, QIAN C X, CHENG L, et al. A laboratory investigation of microbe-inducing CdCO3 precipitate treatment in Cd2+ contaminated soil[J]. Journal of Soils and Sediments, 2010, 10(2): 248-254. [73] YU X N, JIANG J G. Phosphate microbial mineralization removes nickel ions from electroplating wastewater[J]. Journal of Environmental Management, 2019, 245: 447-453. [74] 陈 帅, 王庆平, 王彦君, 等. 地质聚合物固定重金属离子的研究进展[J]. 硅酸盐通报, 2022, 41(10): 3501-3510. CHEN S, WANG Q P, WANG Y J, et al. Research progress on heavy metal ions immobilized by geopolymers[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3501-3510 (in Chinese). [75] LV Y, LIU L, YANG P, et al. Study on leaching and curing mechanism of heavy metals in magnesium coal based backfill materials[J]. Process Safety and Environmental Protection, 2023, 177: 1393-1402. [76] XING Y Q, WANG B M. Modification of phases evolution and heavy metal immobilization in alkali-activated MSWI FA by the incorporation of converter steel slag[J]. Journal of Building Engineering, 2023, 78: 107573. [77] 刘 音, 王春春, 陈 森, 等. 污泥基充填膏体重金属浸出机理及风险评价研究[J]. 山东科技大学学报(自然科学版), 2023, 42(4): 43-51. LIU Y, WANG C C, CHEN S, et al. Study on heavy metal leaching mechanism and risk assessment of sewage sludge-based cemented paste backfill[J]. Journal of Shandong University of Science and Technology (Natural Science), 2023, 42(4): 43-51 (in Chinese). [78] 刘 清, 刘雨杉, 招国栋, 等. 地质聚合物固化重金属离子的研究进展[J]. 应用化工, 2022, 51(4): 1094-1100. LIU Q, LIU Y S, ZHAO G D, et al. Research progress on solidification of heavy metal ions by geopolymer[J]. Applied Chemical Industry, 2022, 51(4): 1094-1100 (in Chinese). [79] XU C L, FENG Y L, LI H R, et al. Adsorption of heavy metal ions by iron tailings: behavior, mechanism, evaluation and new perspectives[J]. Journal of Cleaner Production, 2022, 344: 131065. [80] ZANIN E, SCAPINELLO J, DE OLIVEIRA M, et al. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent[J]. Process Safety and Environmental Protection, 2017, 105: 194-200. [81] 陈运涛, 肖 瑶, 王健男, 等. 有机-无机复合固化剂合成及重金属污染底泥固化研究[J]. 环境工程, 2024, 42(3): 82-91. CHEN Y T, XIAO Y, WANG J N, et al. Synthesis of organic-inorganic composite curing agent and its solidification effect on heavy metal contaminated dredged silt[J]. Environmental Engineering, 2024, 42(3): 82-91 (in Chinese). [82] 孙滢斐, 张 攀, 胡敬平, 等. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 252-258. SUN Y F, ZHANG P, HU J P, et al. Research progress of using geopolymers to solidify lead element from lead-containing pollutants[J]. Materials Reports, 2023, 37(7): 252-258 (in Chinese). [83] FAN J Y, YAN J H, ZHOU M Y, et al. Heavy metals immobilization of ternary geopolymer based on nickel slag, lithium slag and metakaolin[J]. 2023, 453: 131380. [84] 庞 博, 刘润清. K型鸟粪石强化磷酸镁水泥固化Pb2+[J]. 硅酸盐学报, 2023, 51(11): 2986-2991. PANG B, LIU R Q. K-struvite reinforced magnesium phosphate cement for solidification of Pb2+[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 2986-2991 (in Chinese). [85] WU D, XU Q Q, HOU D S, et al. Encapsulation of red mud with ultra-high performance concrete (UHPC) for immobilization of alkaline and heavy metals: experiments and simulations[J]. Cement and Concrete Composites, 2023, 142: 105152. [86] 刘龙宇, 杨世利, 赵黄诗雨, 等. 赤泥基纳米零价铁对多金属污染土壤修复效果[J]. 环境科学, 2024, 45(4): 2473-2478. LIU L Y, YANG S L, ZHAO H S Y, et al. Effect of red mud-based nano zero-valent iron on remediation of polymetallic contaminated soil[J]. Environmental Science, 2024, 45(4): 2473-2478 (in Chinese). [87] 丁 萍, 贺玉龙, 何 欢, 等. 复合改良剂FZB对砷镉污染土壤的修复效果[J]. 环境科学, 2021, 42(2): 917-924. DING P, HE Y L, HE H, et al. Remediation effect of compound modifier FZB on arsenic and cadmium contaminated soil[J]. Environmental Science, 2021, 42(2): 917-924 (in Chinese). [88] XU Z M, LU Z Y, ZHANG L S, et al. Red mud based passivator reduced Cd accumulation in edible amaranth by influencing root organic matter metabolism and soil aggregate distribution[J]. Environmental Pollution, 2021, 275: 116543. [89] 张 剑, 孔繁艺, 卢升高. 无机钝化剂对镉污染酸性水稻土的修复效果及其机制[J]. 环境科学, 2022, 43(10): 4679-4686. ZHANG J, KONG F Y, LU S G. Remediation effect and mechanism of inorganic passivators on cadmium contaminated acidic paddy soil[J]. Environmental Science, 2022, 43(10): 4679-4686 (in Chinese). [90] WANG G F, CAO W S, LIANG G C, et al. Leaching behavior of heavy metals from Pb-Zn tailings and remediation by Ca- or Na-montmorillonite[J]. Water, Air, & Soil Pollution, 2023, 234(2): 101. [91] DIATTA J B, GRZEBISZ W, WIATROWSKA K. Competitivity, selectivity, and heavy metals-induced alkaline cation displacement in soils[J]. Soil Science and Plant Nutrition, 2004, 50(6): 899-908. [92] LI W, WANG W X, WU D Q, et al. Mechanochemical treatment with red mud added for heavy metals solidification in municipal solid waste incineration fly ash[J]. Journal of Cleaner Production, 2023, 398: 136642. [93] 杜 梅, 王 宇, 李灿然, 等. 西藏某矿厂铁尾矿中重金属形态及迁移潜力分析[J]. 有色金属工程, 2022, 12(4): 140-145. DU M, WANG Y, LI C R, et al. Analysis on the form and migration potential of heavy metals in iron tailings of a mine in Xizang[J]. Nonferrous Metals Engineering, 2022, 12(4): 140-145 (in Chinese). [94] 纪丁愈, 李云祯, 邹 渝. 铁尾矿制备聚合硫酸铁实验及造纸污水处理效果初步评价[J]. 无机盐工业, 2021, 53(8): 96-100. JI D Y, LI Y Z, ZOU Y. Preparation of polymeric ferric sulfate from iron tailings and preliminary evaluation of papermaking wastewater treatment[J]. Inorganic Chemicals Industry, 2021, 53(8): 96-100 (in Chinese). [95] LI W H, SUN Y J, HUANG Y M, et al. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash[J]. Waste Management, 2019, 87: 407-416. [96] 王禕天. 生活垃圾焚烧飞灰中重金属的固化/稳定化处理及其评估方法的研究[D]. 上海: 华东理工大学, 2021. WANG Y T. Study on solidification/stabilization treatment of heavy metals in fly ash from municipal solid waste incineration and its evaluation method[D]. Shanghai: East China University of Science and Technology, 2021 (in Chinese). [97] 王风贺, 石文艳, 王志良. 重金属捕集剂二甲基二硫代氨基甲酸对6种重金属螯合固化性能的量子化学研究[J]. 计算机与应用化学, 2012, 29(6): 647-650. WANG F H, SHI W Y, WANG Z L. Quantum chemiatry study on six heavy metal ions complexes with dimethyldithiocarbamate[J]. Computers and Applied Chemistry, 2012, 29(6): 647-650 (in Chinese). [98] 蔚龙凤, 王海珍. 螯合沉淀法去除稀土冶炼废水中的重金属试验研究[J]. 湿法冶金, 2023, 42(6): 644-649. WEI L F, WANG H Z. Removal of heavy metals from rare earth hydrometallurgical wastewater by chelating precipitation method[J]. Hydrometallurgy of China, 2023, 42(6): 644-649 (in Chinese). [99] AL D Y, KHRAISHEH M A M, TUTUNJI M F. Sorption of lead ions on diatomite and manganese oxides modified diatomite[J]. Water Research, 2001, 35(15): 3724-3728. [100] KALUDJEROVIC-RADOICIC T, RAICEVIC S. Aqueous Pb sorption by synthetic and natural apatite: kinetics, equilibrium and thermodynamic studies[J]. Chemical Engineering Journal, 2010, 160(2): 503-510. [101] 王欣羽, 张冰如, 朱衍皇. 新型重金属螯合剂对焚烧飞灰中Pb的稳定性能研究[J]. 环境污染与防治, 2023, 45(3): 316-321. WANG X Y, ZHANG B R, ZHU Y H. Stability performance study of a new heavy metal chelating agent against Pb in domestic waste incineration fly ash[J]. Environmental Pollution & Control, 2023, 45(3): 316-321 (in Chinese). [102] LIU J J, ZHA F S, XU L, et al. Effect of chloride attack on strength and leaching properties of solidified/stabilized heavy metal contaminated soils[J]. Engineering Geology, 2018, 246: 28-35. [103] ZHANG H Q, YANG Y Y, YI Y C. Effect of sulfate erosion on strength and leaching characteristic of stabilized heavy metal contaminated red clay[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3): 666-675. [104] 杜延军, 金 飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. DU Y J, JIN F, LIU S Y, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124 (in Chinese). [105] LI W T, NI P P, YI Y L. Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils[J]. Science of the Total Environment, 2019, 671: 741-753. [106] WANG Y, LI R P, QIAO J G. Solidification of heavy metals in municipal solid waste incineration washed fly ash by asphalt mixture[J]. Chemosphere, 2023, 343: 140281. [107] MA W C, CHEN D M, PAN M H, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: a comparative study[J]. Journal of Environmental Management, 2019, 247: 169-177. [108] 赵鑫娜, 杨忠芳, 余 涛. 矿区土壤重金属污染及修复技术研究进展[J]. 中国地质, 2023, 50(1): 84-101. ZHAO X N, YANG Z F, YU T. Review on heavy metal pollution and remediation technology in the soil of mining areas[J]. Geology in China, 2023, 50(1): 84-101 (in Chinese). [109] 陈忠清, 丁佩思, 吕 越, 等. 炉渣-粉煤灰地聚合物固化铜污染土[J]. 有色金属工程, 2023, 13(9): 161-169. CHEN Z Q, DING P S, LYU Y, et al. Solidification of copper contaminated soil by fly ash based geopolymer with bottom ash[J]. Nonferrous Metals Engineering, 2023, 13(9): 161-169 (in Chinese). [110] ZHANG J, GAO Y F, LI Z F, et al. Pb2+ and Cr3+ immobilization efficiency and mechanism in red-mud-based geopolymer grouts[J]. Chemosphere, 2023, 321: 138129. [111] 李圣军, 李家茂, 华 磊, 等. 矿物基胶凝材料对酸性重金属污染土壤原位修复[J]. 过程工程学报, 2024, 24(9): 1120-1126. LI S J, LI J M, HUA L, et al. In-situ remediation of acidic heavy metal contaminated soil using mineral-based binding materials[J]. The Chinese Journal of Process Engineering, 2024, 24(9): 1120-1126 (in Chinese). [112] LI S L, WANG W, LIANG F P, et al. Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application[J]. Journal of Hazardous Materials, 2017, 322: 163-171. [113] LI Y, LIU C, WEI H Y, et al. Dual-functional lignocellulosic mulch as agricultural plastic alternative for sustained-release of photosensitive pesticide and immobilizing heavy metal ions[J]. International Journal of Biological Macromolecules, 2024, 273: 132945. [114] HU S X, ZHONG L L, YANG X J, et al. Synthesis of rare earth tailing-based geopolymer for efficiently immobilizing heavy metals[J]. Construction and Building Materials, 2020, 254: 119273. [115] 蔡卓雨, 刘 清, 毕嘉琪, 等. 高炉矿渣-粉煤灰基地质聚合物固化铅离子及防辐射性能研究[J]. 无机盐工业, 2022, 54(8): 125-131. CAI Z Y, LIU Q, BI J Q, et al. Study on Pb2+ solidification and radiation protection performance of blast furnace slag-fly ash based geopolymer[J]. Inorganic Chemicals Industry, 2022, 54(8): 125-131 (in Chinese). |
| [1] | 胡建林, 李智林, 周永祥, 冷发光, 杜修力. 生石灰激发高炉矿渣-粉煤灰地质聚合物固化土力学特性研究[J]. 硅酸盐通报, 2025, 44(8): 2912-2923. |
| [2] | 颜婉滢, 王东星, 聂利文. 全工业固废基高贝利特硫铝酸盐水泥熟料的制备与矿物形成微观机理[J]. 硅酸盐通报, 2025, 44(8): 2955-2964. |
| [3] | 赫明胜, 秦庆金, 高慧, 曲春雨, 秦永, 房奎圳, 郝建帅. 减水剂对镁渣-粉煤灰基流态固化土流变性及强度的影响[J]. 硅酸盐通报, 2025, 44(7): 2710-2719. |
| [4] | 姚钧天, 杨建宇, 杨伟军, 金振洲, 贺智慧, 何建刚. 工业固废协同固化红砂岩土试验研究[J]. 硅酸盐通报, 2025, 44(7): 2730-2740. |
| [5] | 许红梅, 曲晓锐, 李立峰, 赵庆彬, 牛晨晨, 徐凯. 鼓泡对高放废液玻璃固化陶瓷电熔炉熔化性能影响模拟研究[J]. 硅酸盐通报, 2025, 44(6): 2306-2319. |
| [6] | 武志红, 彭静之, 潘悦鑫, 于刚, 任淑芳, 许红金. 铜尾矿在水泥生产及混凝土应用中的研究进展[J]. 硅酸盐通报, 2025, 44(6): 2172-2180. |
| [7] | 邱明明, 杨萌, 李晓敏, 李盛斌. 水泥固化高填方黄土抗压强度特性及其影响因素[J]. 硅酸盐通报, 2025, 44(5): 1927-1938. |
| [8] | 叶伟开, 盛国栋, 鲁刘磊, 张锦红, 张宗洋, 董发鑫, 刘明旺, 汪峻峰, 罗琦. 固体激发剂对单组份碱激发矿渣-飞灰复合胶凝材料的影响[J]. 硅酸盐通报, 2025, 44(5): 1779-1787. |
| [9] | 骆展鹏, 熊春林, 韩泽军, 王胜新, 刘凯华. 矿渣-粉煤灰-玻璃粉复合固化盾构土力学性能及固化机制[J]. 硅酸盐通报, 2025, 44(5): 1803-1812. |
| [10] | 马召林, 明阳, 李文俊, 任昊, 刘永道, 田唯, 张国志, 陈飞翔, 窦广元, 范志宏. 多元固废协同制备超细高活性矿物掺合料及性能研究[J]. 硅酸盐通报, 2025, 44(5): 1824-1833. |
| [11] | 魏贤华, 王得林, 李超, 钟海军, 郭龙龙. 粉煤灰基地质聚合物及含水率对固化土力学性能的影响[J]. 硅酸盐通报, 2025, 44(5): 1949-1956. |
| [12] | 郭正旺, 肖海平, 张绪钦, 李岩, 李宇. 低碳窑渣固废陶瓷烧制过程无机矿相演变及重金属固化机理[J]. 硅酸盐通报, 2025, 44(4): 1566-1573. |
| [13] | 王紫嫣, 孙涛, 欧阳高尚. 过硫磷石膏矿渣水泥性能调控研究进展[J]. 硅酸盐通报, 2025, 44(4): 1208-1226. |
| [14] | 安然, 蔡苏童, 张先伟, 高浩东, 姚淼, 刘魁. 基于单轴压缩与CT扫描的矿渣固化土细观裂隙及损伤模型研究[J]. 硅酸盐通报, 2025, 44(4): 1495-1503. |
| [15] | 刘彦浩, 刘路路, 刘涛, 张艳, 余刘成, 张顶飞, 战元喆. 硅灰-矿渣-电石渣协同固化黄泛区粉土力学性能与微观机理研究[J]. 硅酸盐通报, 2025, 44(4): 1513-1524. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||