欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (4): 1495-1503.DOI: 10.16552/j.cnki.issn1001-1625.2024.1338

• 道路材料 • 上一篇    下一篇

基于单轴压缩与CT扫描的矿渣固化土细观裂隙及损伤模型研究

安然1,2, 蔡苏童1, 张先伟3, 高浩东3, 姚淼4, 刘魁4   

  1. 1.武汉科技大学城市建设学院,武汉 430065;
    2.合肥工业大学土木与水利工程学院,合肥 230009;
    3.中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室,武汉 430071;
    4.信电综合勘察设计研究院有限公司,西安 710001
  • 收稿日期:2024-11-08 修订日期:2025-01-10 出版日期:2025-04-15 发布日期:2025-04-18
  • 作者简介:安 然(1992—),男,博士,副教授。主要从事工程渣土改性及力学行为多尺度研究。E-mail:anran@wust.edu.cn
  • 基金资助:
    国家自然科学基金(12102312,41972285);陕西省2024年重点研发计划(2024GH-YBXM-05)

Microscopic Cracks and Damage Model of Slag Stabilized Soil Based on Uniaxial Compression and CT Scanning

AN Ran1,2, CAI Sutong1, ZHANG Xianwei3, GAO Haodong3, YAO Miao4, LIU Kui4   

  1. 1. College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China;
    2. College of Civil Engineering, Hefei University of Technology, Hefei 230009, China;
    3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;
    4. China DK Comprehensive Engineering Investigate and Design Research Institute Co., Ltd., Xi’an 710001, China
  • Received:2024-11-08 Revised:2025-01-10 Published:2025-04-15 Online:2025-04-18

摘要: 为探究荷载作用下矿渣固化土细观结构的演化特征,本文开展单轴压缩过程中的原位计算机断层(CT)扫描试验,结合图像处理与三维(3D)重构技术提取了二维(2D)/三维裂隙的量化信息,借助裂隙体积参数表征了细观结构损伤变量,最后建立了细观损伤模型对试样的应力-应变关系进行准确描述。结果表明:在单轴压缩荷载作用下,矿渣固化土的应力-应变曲线表现出明显的应变软化型特征,峰值应力为1.85 MPa;随轴向应变的增加,二维裂隙率和裂隙分布的离散程度不断提高;三维重构模型动态展现了矿渣固化土的开裂过程及主裂隙面的演化特征,三维裂隙率从初始的3.39%增加至破坏时的9.78%、其数值及裂隙连通度均与轴向应变呈对数型函数关系;试样的破坏伴随裂隙的萌发(ε=0%~0.2%)、快速扩展(ε=0.2%~1.5%)与基本稳定(ε=1.5%~2.0%)3个阶段;利用裂隙体积表征了结构损伤变量,由此建立的细观损伤模型形式较简单,参数易确定,且可准确预测矿渣固化土的应力-应变关系。研究结果可为矿渣固化土破坏机制的多尺度分析提供新视角。

关键词: 矿渣固化土, 裂隙, CT扫描, 应力-应变, 细观损伤模型

Abstract: In order to explore the evolution characteristics of the meso-structure of slag solidified soil under load, this paper carried out in-situ computed tomography (CT) scanning test during uniaxial compression. The quantitative information of fractures in 2D and 3D form was extracted by combining image processing and 3D reconstruction techniques. With the volume parameters of fractures, the structural damage variables of slag solidified soil were calculated accordingly. Subsequently, a microscopic damage model was established to quantitatively describe the stress-strain relationship of the samples. The results show that the stress-strain curves of slag solidified soil under uniaxial compression loading obviously presents characteristics strain-softening, with a peak stress of 1.85 MPa. With the increase of axial strain, the 2D porosity and the dispersion of fracture distribution increase continuously. The 3D reconstruction model dynamically reveals the cracking process and the evolution of the main fracture surface, and the 3D porosity increases from an initial 3.39% to 9.78% at failure. Both the 3D porosity and fracture connectivity exhibit an logarithmic function relationship with axial strain. The failure of the sample involves three distinct stages: fracture initiation (ε=0%~0.2%), rapid propagation (ε=0.2%~1.5%) and stabilization (ε=1.5%~2.0%). The mesoscopic damage model based on damage variables, which were deprived from fracture volumes, is simple in form, easy to determine parameters, and can accurately predict the stress-strain curves of slag solidified soil. This study provides a novel perspective for the multi-scale analysis of failure mechanism of slag solidified soil.

Key words: slag solidified soil, fracture, CT scanning, stress-strain, microscomic damage model

中图分类号: