[1] 阳 栋, 李 晃, 李水生, 等. 建筑业减碳途径及实施策略[J]. 科技导报, 2022, 40(11): 105-110. YANG D, LI H, LI S S, et al. On the ways and implementation strategies of carbon reduction in China’s construction industry[J]. Science & Technology Review, 2022, 40(11): 105-110 (in Chinese). [2] 中国建筑材料联合会. 中国建筑材料工业碳排放报告(2020年度)[J]. 建筑, 2021(8): 21-23. China Building Materials Federation. Carbon emission report of China building materials industry (2020)[J]. Construction and Architecture, 2021(8): 21-23 (in Chinese). [3] 顾晓薇, 张延年, 张伟峰, 等. 大宗工业固废高值建材化利用研究现状与展望[J]. 金属矿山, 2022(1): 2-13. GU X W, ZHANG Y N, ZHANG W F, et al. Research status and prospect of high value building materials utilization of bulk industrial solid waste[J]. Metal Mine, 2022(1): 2-13 (in Chinese). [4] 杨 光, 杨志强, 石 磊, 等. 钢渣资源化利用与实践[J]. 冶金能源, 2024, 43(5): 37-40+59. YANG G, YANG Z Q, SHI L, et al. Resource utilization and practice of steel slag[J]. Energy for Metallurgical Industry, 2024, 43(5): 37-40+59 (in Chinese). [5] 张建俊, 王宝强, 蔡冀奇, 等. 粉煤灰基固废胶凝材料流变特性机理研究[J]. 功能材料, 2023, 54(12): 12154-12162. ZHANG J J, WANG B Q, CAI J Q, et al. Study on mechanism of solid waste cementitious material based on rheological properties of fly ash[J]. Journal of Functional Materials, 2023, 54(12): 12154-12162 (in Chinese). [6] 郑玉龙, 嵇 帅, 陆春华, 等. 基于固废磷石膏制备胶凝材料的工艺与机制[J]. 复合材料学报, 2024, 41(3): 1436-1446. ZHENG Y L, JI S, LU C H, et al. Preparation technology and mechanism of cementitious material based on solid waste phosphogypsum[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1436-1446 (in Chinese). [7] 裴军军, 苑博文, 高 敏, 等. 再生微粉多元复合胶凝体系的性能研究[J]. 硅酸盐通报, 2024, 43(5): 1812-1821. PEI J J, YUAN B W, GAO M, et al. Properties of multi-component composite cementitious system of regenerated micropowder[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1812-1821 (in Chinese). [8] 鞠 成, 汪雨萱, 孙鹏飞, 等. 普通硅酸盐水泥对负温碱激发矿渣砂浆力学性能的影响[J]. 混凝土, 2024(6): 198-201+214. JU C, WANG Y X, SUN P F, et al. Effect of OPC on mechanical properties of alkali-activated slag mortar at negative temperature[J]. Concrete, 2024(6): 198-201+214 (in Chinese). [9] LI G L, ZHOU C K, AHMAD W, et al. Fly ash application as supplementary cementitious material: a review[J]. Materials, 2022, 15(7): 2664. [10] NA H, WANG Y J, ZHANG X, et al. Hydration activity and carbonation characteristics of dicalcium silicate in steel slag: a review[J]. Metals, 2021, 11(10): 1580. [11] NATH S K, KUMAR S. Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement[J]. Construction and Building Materials, 2016, 125: 127-134. [12] WANG X, NI W, LI J J, et al. Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms[J]. Cement and Concrete Research, 2019, 125: 105893. [13] SINGH S K, JYOTI, VASHISTHA P. Development of newer composite cement through mechano-chemical activation of steel slag[J]. Construction and Building Materials, 2021, 268: 121147. [14] ZHANG J J, TAN H B, HE X Y, et al. Utilization of carbide slag-granulated blast furnace slag system by wet grinding as low carbon cementitious materials[J]. Construction and Building Materials, 2020, 249: 118763. [15] TAN H B, LI M G, HE X Y, et al. Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement[J]. Journal of Cleaner Production, 2020, 250: 119528. [16] ALLAHVERDI A, MALEKI A, MAHINROOSTA M. Chemical activation of slag-blended Portland cement[J]. Journal of Building Engineering, 2018, 18: 76-83. [17] ABDEL-GAWWAD H A, MOHAMMED M S, ADS E N. A novel eco-sustainable approach for the cleaner production of ready-mix alkali activated cement using industrial solid wastes and organic-based activator powder[J]. Journal of Cleaner Production, 2020, 256: 120705. [18] HUANG Q M, WANG K, LU J P, et al. High-volume mineral admixtures cement: the effects of particle size distribution[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2024, 39(1): 102-108. [19] 杨文涛, 薛 冰, 代永富, 等. 球磨时间对钨粉粒度分布及形貌影响[J]. 粉末冶金技术, 2021, 39(5): 423-428. YANG W T, XUE B, DAI Y F, et al. Effect of milling time on the particle size distribution and morphology of tungsten powders[J]. Powder Metallurgy Technology, 2021, 39(5): 423-428 (in Chinese). [20] PRZIWARA P, BREITUNG-FAES S, KWADE A. Impact of grinding aids on dry grinding performance, bulk properties and surface energy[J]. Advanced Powder Technology, 2018, 29(2): 416-425. [21] YU Y N, GE Y, LIU P H. Recycling of expired cement and aged supplementary cementitious materials based on close packing theory and space filling effect[J]. Journal of Cleaner Production, 2019, 239: 118064. [22] DUAN S Y, LIAO H Q, CHENG F Q, et al. Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag[J]. Construction and Building Materials, 2018, 187: 1113-1120. [23] ALARCON-RUIZ L, PLATRET G, MASSIEU E, et al. The use of thermal analysis in assessing the effect of temperature on a cement paste[J]. Cement and Concrete Research, 2005, 35(3): 609-613. [24] TAN H, HE X, LI M, et al. Effects of water-cement ratio on pore structure and permeability of C-S-H gel in hydrated cement[J]. Construction and Building Materials, 2020, 230: 117045. |