[1] American Concrete Institute. Controlled low strength materials: ACI229R—99[S]. Farmington Hills (MI): American Concrete Institute, 2005. [2] 王新岐, 邵 捷, 问鹏辉, 等. 绿色可控低强材料组成与工作性能研究进展[J]. 硅酸盐通报, 2023, 42(7): 2629-2644. WANG X Q, SHAO J, WEN P H, et al. Research progress on composition and working performance of green controlled low strength material[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2629-2644 (in Chinese). [3] PUJADAS P, BLANCO A, CAVALARO S, et al. Performance-based procedure for the definition of controlled low-strength mixtures[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 06015003. [4] ALIZADEH V, HELWANY S, GHORBANPOOR A, et al. Design and application of controlled low strength materials as a structural fill[J]. Construction and Building Materials, 2014, 53: 425-431. [5] MNEINA A, SOLIMAN A M, AHMED A, et al. Engineering properties of controlled low-strength materials containing treated oil sand waste[J]. Construction and Building Materials, 2018, 159: 277-285. [6] HITCH J. Test methods for controlled low-strength material (CLSM): past, present, and future[M]. ASTM Special Technical Publications, 1998: 3-10 [7] TIKALSKY P, GAFFNEY M, REGAN R. Properties of controlled low-strength material containing foundry sand[J]. ACI Materials Journal, 2000, 97(6): 698-702. [8] 王建刚, 张金喜, 郭阳阳, 等. 含红砖建筑垃圾细料制备早强CLSM性能影响因素[J]. 北京工业大学学报, 2018, 44(11): 1414-1422. WANG J G, ZHANG J X, GUO Y Y, et al. Influence factors of rapid-hardening controlled low strength materials made of recycled fine aggregate based on red brick construction and demolition waste[J]. Journal of Beijing University of Technology, 2018, 44(11): 1414-1422 (in Chinese). [9] KIM Y S, DO T M, KIM M J, et al. Utilization of by-product in controlled low-strength material for geothermal systems: engineering performances, environmental impact, and cost analysis[J]. Journal of Cleaner Production, 2018, 172: 909-920. [10] PARK S S, KIM S J, CHEN K Q, et al. Crushing characteristics of a recycled aggregate from waste concrete[J]. Construction and Building Materials, 2018, 160: 100-105. [11] ANTONIA L, CHANDRA L, HARDJITO D. The impact of using fly ash, silica fume and calcium carbonate on the workability and compressive strength of mortar[J]. Procedia Engineering, 2015, 125: 773-779. [12] RAHMAN M E, MUNTOHAR A S, PAKRASHI V, et al. Self compacting concrete from uncontrolled burning of rice husk and blended fine aggregate[J]. Materials & Design, 2014, 55: 410-415. [13] SIDDIQUE R. Utilization of waste materials and by-products in producing controlled low-strength materials[J]. Resources, Conservation and Recycling, 2009, 54(1): 1-8. [14] 张云飞, 姚华彦, 扈惠敏, 等. 燃煤电厂炉渣综合利用现状分析[J]. 中国资源综合利用, 2020, 38(11): 72-74+104. ZHANG Y F, YAO H Y, HU H M, et al. Analysis on current situation of comprehensive utilization of slag in coal-fired power plants[J]. China Resources Comprehensive Utilization, 2020, 38(11): 72-74+104 (in Chinese). [15] 易龙生, 齐莉娜, 李来顺, 等. 高强度等级粉煤灰水泥的试验研究[J]. 非金属矿, 2015, 38(4): 31-34. YI L S, QI L N, LI L S, et al. Experimental rresearch on fly ash cement which meet high strength[J]. Non-Metallic Mines, 2015, 38(4): 31-34 (in Chinese). [16] LACHEMI M, HOSSAIN K M A, SHEHATA M, et al. Characteristics of controlled low-strength materials incorporating cement kiln dust[J]. Canadian Journal of Civil Engineering, 2007, 34(4): 485-495. [17] WU J Y, LEE M Z. Beneficial reuse of construction surplus clay in CLSM[J]. International Journal of Pavement Research & Technology, 2011, 4(5): 293-230. [18] ZHU Y P, LIU D R, FANG G W, et al. Utilization of excavated loess and gravel soil in controlled low strength material: laboratory and field tests[J]. Construction and Building Materials, 2022, 360: 129604. [19] KIM Y S, DO T M, KIM H K, et al. Utilization of excavated soil in coal ash-based controlled low strength material (CLSM)[J]. Construction and Building Materials, 2016, 124: 598-605. [20] NAGANATHAN S, RAZAK H A, HAMID S N A. Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash[J]. Waste Management & Research, 2010, 28(9): 848-860. [21] 李 飞, 刘晨辉, 吴英彪, 等. 建筑垃圾再生材料对可控低强材料(CLSM)性能影响研究[J]. 混凝土, 2018(8): 71-73. LI F, LIU C H, WU Y B, et al. Influence of construction and demolished waste on controlled low strength material(CLSM)[J]. Concrete, 2018(8): 71-73 (in Chinese). [22] 张梦缘, 祁熙鹏, 杨雄杰, 等. 砖混再生细骨料砂浆力学性能、耐久性能及微观形貌研究[J]. 市政技术, 2022, 40(8): 112-119. ZHANG M Y, QI X P, YANG X J, et al. Study on mechanical properties, durability and micromorphology of brick concrete recycled fine aggregate mortar[J]. Journal of Municipal Technology, 2022, 40(8): 112-119 (in Chinese). [23] HE P P, DRISSI S, HU X, et al. Investigation on the influential mechanism of FA and GGBS on the properties of CO2-cured cement paste[J]. Cement and Concrete Composites, 2023, 142: 105186. |