[1] 祝晶晶, 吕存根, 夏 春. 碱性工业固废堆存对周边环境的危害分析及应对措施[J]. 冶金标准化与质量, 2024, 62(2): 29-32. ZHU J J, LV C G, XIA C. Analysis and treatmeng suggestions on the envirinmental impact of alkaline industrial solid waste[J]. Metallurgical Standardization & Quality, 2024, 62(2): 29-32 (in Chinese). [2] 樊健生, 丁 然. 超高性能混凝土在房屋建筑结构中的研究与应用进展[J]. 硅酸盐学报, 2023, 51(5): 1246-1258. FAN J S, DING R. Development on ultra-high performance concrete in building structures[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1246-1258 (in Chinese). [3] 张永鸿, 任双宏, 袁顺利. 国内基于超高性能混凝土(UHPC)的装配式建筑连接应用研究综述[J]. 建筑结构, 2023, 53(增刊1): 1200-1205. ZHANG Y H, REN S H, YUAN S L. Domestic based on ultra high performance concrete (UHPC) review of research on connection application of prefabricated buildings[J]. Building Structure, 2023, 53(supplement 1): 1200-1205 (in Chinese). [4] ABDELLATIEF M, ELRAHMAN M A, ABADEL A A, et al. Ultra-high performance concrete versus ultra-high performance geopolymer concrete: mechanical performance, microstructure, and ecological assessment[J]. Journal of Building Engineering, 2023, 79: 107835. [5] NUKAH P D, ABBEY S J, BOOTH C A, et al. Development of low carbon concrete and prospective of geopolymer concrete using lightweight coarse aggregate and cement replacement materials[J]. Construction and Building Materials, 2024, 428: 136295. [6] LIU J, HU L, TANG L P, et al. Shrinkage behaviour, early hydration and hardened properties of sodium silicate activated slag incorporated with gypsum and cement[J]. Construction and Building Materials, 2020, 248: 118687. [7] LIU Y W, SHI C J, ZHANG Z H, et al. Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume[J]. Cement and Concrete Composites, 2020, 112: 103665. [8] ABDELLATIEF M, MORTAGI M, ELRAHMAN M A, et al. Characterization and optimization of fresh and hardened properties of ultra-high performance geopolymer concrete[J]. Case Studies in Construction Materials, 2023, 19: e02549. [9] 冯勤勤. 掺硅锰渣碱激发超高性能混凝土的力学性能及耐久性研究[D]. 湘潭: 湘潭大学, 2021. FENG Q Q. Study on mechanical properties and durability of alkali-activated ultra-high performance concrete with silicomanganese slag[D]. Xiangtan: Xiangtan University, 2021 (in Chinese). [10] MOUSAVINEJAD S H G, SAMMAK M. Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete[J]. Structures, 2021, 32: 1420-1427. [11] ABD ELLATIEF M, ABADEL A A, FEDEROWICZ K, et al. Mechanical properties, high temperature resistance and microstructure of eco-friendly ultra-high performance geopolymer concrete: role of ceramic waste addition[J]. Construction and Building Materials, 2023, 401: 132677. [12] 李宏标. 基于电化学阻抗谱的碱激发材料硬化过程研究[D]. 深圳: 深圳大学, 2019. LI H B. A study on the hardening process of the alkali activated material by using electrochemical impedance spectroscopy[D]. Shenzhen: Shenzhen University, 2019 (in Chinese). [13] 许家宁, 吴嘉君, 朱银国, 等. 混凝土传输性的研究进展综述[J]. 江苏建筑, 2012(5): 88-89+115. XU J N, WU J J, ZHU Y G, et al. Review on the research progress about transport properties of concrete[J]. Jiangsu Construction, 2012(5): 88-89+115 (in Chinese). [14] QAIDI S M A, SULAIMAN ATRUSHI D, MOHAMMED A S, et al. Ultra-high-performance geopolymer concrete: a review[J]. Construction and Building Materials, 2022, 346: 128495. [15] LUO L, YAO W, LIANG G W, et al. Workability, autogenous shrinkage and microstructure of alkali-activated slag/fly ash slurries: effect of precursor composition and sodium silicate modulus[J]. Journal of Building Engineering, 2023, 73: 106712. [16] SHI Z G, SHI C J, WAN S, et al. Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars[J]. Cement and Concrete Research, 2018, 111: 104-115. [17] KARIM M R, ZAIN M F M, JAMIL M, et al. Fabrication of a non-cement binder using slag, palm oil fuel ash and rice husk ash with sodium hydroxide[J]. Construction and Building Materials, 2013, 49: 894-902. [18] XU Z K, ZHANG J P, ZHANG J J, et al. Influence of steel slag and steel fiber on the mechanical properties, durability, and life cycle assessment of ultra-high performance geopolymer concrete[J]. Construction and Building Materials, 2024, 441: 137590. [19] ZHANG R, HE H Y, SONG Y H, et al. Influence of mix proportioning parameters and curing regimes on the properties of ultra-high strength alkali-activated concrete[J]. Construction and Building Materials, 2023, 393: 132139. [20] 田 颖, 吴世超, 李京军, 等. 基于响应面法的碱激发矿渣-粉煤灰砂浆配比优化[J]. 硅酸盐通报, 2024, 43(11): 4177-4184. TIAN Y, WU S C, LI J J, et al. Optimization of mix ratio of alkali-activated slag-fly ash mortar based on response surface methodology[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(11): 4177-4184 (in Chinese). [21] 李 超, 李志康, 李新宇, 等. 地聚物凝结硬化特性影响因素研究综述[J]. 硅酸盐通报, 2025, 44(2): 501-514. LI C, LI Z K, LI X Y, et al. A Review on factors affecting setting and hardening characteristics of geopolymers[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 501-514 (in Chinese). [22] MOHAMED O A, AL KHATTAB R. Fresh properties and sulfuric acid resistance of sustainable mortar using alkali-activated GGBS/fly ash binder[J]. Polymers, 2022, 14(3): 591. [23] 李 平, 马倩敏, 谭绍恩, 等. 活化剂种类及含量对碱激发矿渣/红砂岩胶凝材料的影响[J]. 材料导报, 2024, 38(增刊2): 270-274. LI P, MA Q M, TAN S E, et al. Effect of activator type and content on alkali activated slag/red sandstone cementitious materials[J]. Materials Reports, 2024, 38(supplement 2): 270-274 (in Chinese). [24] LIU J H, GUO L Z, CHENG L N, et al. Effect of alkali dosage and silicate modulus on the deterioration of alkali-activated concrete properties subjected to sodium chloride attack and freeze thaw cycles[J]. Construction and Building Materials, 2024, 449: 138335. [25] LIANG G W, YAO W, WEI Y Q. A green ultra-high performance geopolymer concrete containing recycled fine aggregate: mechanical properties, freeze-thaw resistance and microstructure[J]. Science of the Total Environment, 2023, 895: 165090. [26] 郭剑飞. 混凝土孔结构与强度关系理论研究[D]. 杭州: 浙江大学, 2004. GUO J F. The theoretical research of the pore structure and strength of concrete[D]. Hangzhou: Zhejiang University, 2004 (in Chinese). [27] BAHMANI H, MOSTOFINEJAD D. A review of engineering properties of ultra-high-performance geopolymer concrete[J]. Developments in the Built Environment, 2023, 14: 100126. [28] 成鑫磊, 穆 锐, 刘晓英. 超高性能混凝土的制备及力学性能研究进展[J]. 硅酸盐通报, 2024, 43(12): 4295-4312. CHENG X L, MU R, LIU X Y. Review on the preparation and mechanical properties of ultra-high performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(12): 4295-4312. [29] 施范铧, 贺智敏, 刘 畅, 等. 养护条件对UHPC强度和毛细吸水性的影响[J]. 宁波大学学报(理工版), 2022, 35(3): 10-18. SHI F H, HE Z M, LIU C, et al. Effect of curing condition on mechanical strength and capillary water absorption of UHPC[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2022, 35(3): 10-18 (in Chinese). [30] 余红发, 刘俊龙, 张云升, 等. 高性能混凝土微观结构及其高耐久性形成机理[J]. 南京航空航天大学学报, 2007, 39(2): 240-243. YU H F, LIU J L, ZHANG Y S, et al. Microstructure and durability forming mechanism of high performance concrete[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(2): 240-243 (in Chinese). [31] 石马刚, 柯国军, 邹品玉, 等. 碱-矿渣水泥的水化、力学及干缩性能研究进展[J]. 硅酸盐通报, 2022, 41(1): 162-173+191. SHI M G, KE G J, ZOU P Y, et al. Research progress of hydration, mechanical and dry shrinkage properties of alkali-activated slag cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 162-173+191 (in Chinese). [32] 李 涛. 基于分子动力学理论水和离子在掺铝相水泥基材料中的吸附与传输特性研究[D]. 青岛: 青岛理工大学, 2018. LI T. Study on adsorption and transport characteristics of water and ions in aluminum-doped cement-based materials based on molecular dynamics method[D]. Qingdao: Qingdao University of Technology, 2018 (in Chinese). [33] 徐小倩, 李 涛, 李海斌, 等. 基于分子动力学理论研究离子在C-A-S-H纳米孔道中的吸附与传输特性[J]. 硅酸盐通报, 2019, 38(3): 737-742. XU X Q, LI T, LI H B, et al. Adsorption and transport properties of ions in C-A-S-H nanopores based on molecular dynamics theory[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 737-742 (in Chinese). [34] 曹涵博. 考虑堆积特性的超高性能混凝土耐久性能研究[D]. 重庆: 重庆交通大学, 2023. CAO H B. Study on durability of ultra-high performance concrete considering packing characteristics[D]. Chongqing: Chongqing Jiaotong University, 2023 (in Chinese). [35] 刘康宁, 尹天一, 余 睿. 超高性能混凝土颗粒紧密堆积理论优化探索[J]. 建筑材料学报, 2023, 26(7): 739-745. LIU K N, YIN T Y, YU R. Optimization exploration of particle close packing theory in ultra-high performance concrete[J]. Journal of Building Materials, 2023, 26(7): 739-745 (in Chinese). [36] 孙 彬, 毛诗洋, 王景贤, 等. 长观试件混凝土自然碳化与加速碳化的相关性试验研究[J]. 建筑结构, 2019, 49(9): 111-114+70. SUN B, MAO S Y, WANG J X, et al. Experimental study on correlation between natural carbonation and accelerated carbonation of long-term observation concrete specimens[J]. Building Structure, 2019, 49(9): 111-114+70 (in Chinese). [37] 郭冰冰, 储 嘉, 王 艳, 等. 碳化养护混凝土生命周期环境影响的评估[J]. 材料导报, 2024, 38(24): 111-120. GUO B B, CHU J, WANG Y, et al. Life cycle assessment of environmental impacts of CO2-cured concrete[J]. Materials Reports, 2024, 38(24): 111-120 (in Chinese). [38] ZHANG X H, WU Z M, XIE J, et al. Trends toward lower-carbon ultra-high performance concrete (UHPC): a review[J]. Construction and Building Materials, 2024, 420: 135602. [39] MÜLLER H S, HAIST M, VOGEL M. Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime[J]. Construction and Building Materials, 2014, 67: 321-337. [40] SHI D Q, XIA Y, ZHAO Y D, et al. Evaluation of technical and gamma radiation shielding properties of sustainable ultra-high performance geopolymer concrete[J]. Construction and Building Materials, 2024, 436: 137003. |