欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (4): 1386-1397.DOI: 10.16552/j.cnki.issn1001-1625.2025.0002

• 混凝土 • 上一篇    下一篇

电解锰渣基绿色混凝土性能及环境效应分析

王凡1,2, 龙广成1, 白敏1, 石莹莹1,3   

  1. 1.中南大学土木工程学院,长沙 410075;
    2.中南大学资源加工与生物工程学院,长沙 410083;
    3.中南大学资源与安全工程学院,长沙 410083
  • 收稿日期:2025-01-02 修订日期:2025-02-17 出版日期:2025-04-15 发布日期:2025-04-18
  • 通信作者: 龙广成,博士,教授。E-mail:longguangcheng@csu.edu.cn
  • 作者简介:王 凡(1994—),男,博士。主要从事矿冶固体废弃物资源化利用的研究。E-mail:wn2020@csu.edu.cn
  • 基金资助:
    湖南省重点研发项目(2020wk2005)

Analysis of Performance and Environmental Effect of Electrolytic Manganese Residue-Based Green Concrete

WANG Fan1,2, LONG Guangcheng1, BAI Min1, SHI Yingying1,3   

  1. 1. School of Civil Engineering, Central South University, Changsha 410075, China;
    2. School of Resource Processing and Bioengineering, Central South University, Changsha 410083, China;
    3. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  • Received:2025-01-02 Revised:2025-02-17 Published:2025-04-15 Online:2025-04-18

摘要: 为提高电解锰渣(EMR)的资源化利用效率,采用EMR基胶凝材料协同EMR尾矿砂及EMR基陶粒制备EMR基绿色轻骨料混凝土(EGLAC)和透水混凝土(EGPC),重点探究了强度、孔隙特征及环境影响效应。研究结果表明,EMR多级协同资源化利用可成功制备出性能良好和碳排放低的EMR基绿色混凝土。EGPC和EGLAC的抗压强度和动态弹性模量随着养护龄期的延长而显著增加,两者的28 d抗压强度分别为22.5和48.5 MPa,透水系数分别为1.8和5.2×10-9 mm/s。EGLAC和EGPC的透水系数随着养护龄期的延长而降低,且与强度之间呈指数型降低趋势。这主要归因于EMR基胶凝材料水化优化孔隙及改善骨料与基材界面黏结性能。相较于普通C30和C50混凝土,EGLAC的碳排放量分别降低48.1%和60.2%;当协同优化碳源与能源工艺后,EGLAC的碳排放量分别降低92.9%和94.6%;相较于普通透水混凝土,未协同优化的EGPC的碳排放量降低55.2%,协同优化后EGPC的碳排放量降低93.3%。本研究可为EMR分级高效能建材资源化利用提供重要指导意义。

关键词: 电解锰渣, 绿色混凝土, 环境影响评估, 界面黏结, 碳排放量

Abstract: To enhance the resource utilization efficiency of electrolytic manganese residue (EMR), this study used EMR-based cementitious materials in conjunction with EMR tailings sand and EMR-based ceramsite to prepare EMR-based green lightweight aggregate concrete (EGLAC) and permeable concrete (EGPC). The study primarily investigated their strength, pore characteristics, and environmental impact effects. The results indicate that the multi-level collaborative resource utilization of EMR can successfully produce high-performance and low-carbon-emission EMR-based green concrete. Both EGPC and EGLAC show significant increases in compressive strength and dynamic elastic modulus with prolonged curing age. The 28 d compressive strengths of EGPC and EGLAC are 22.5 and 48.5 MPa, and their permeability coefficients are 1.8 and 5.2×10-9 mm/s, respectively. The permeability coefficient of EGLAC and EGPC decreases with curing age, and shows an exponential decrease in relation to strength. This is primarily attributed to the optimization of pore structure through the hydration of EMR-based cementitious materials and the improvement of the interface bonding between aggregates and the matrix. Compared with conventional C30 and C50 concrete, EGLAC’s carbon emissions are reduced by 48.1% and 60.2%, respectively. After the collaborative optimization of carbon source and energy processes, EGLAC’s carbon emissions are reduced by 92.9% and 94.6%, respectively. Compared with conventional permeable concrete, before collaborative optimization, EGPC’s carbon emissions can be reduced by 55.2%, and after collaborative optimization, EGPC’s carbon emissions can be reduced by 93.3%. This study provides significant guidance for the efficient and graded resource utilization of EMR in building materials.

Key words: electrolytic manganese residue, green concrete, environmental impact assessment, interfacial bonding, carbon emission

中图分类号: