[1] 任 辉, 刘 敏, 王自国, 等. 我国锰矿资源及产业链安全保障问题研究[J]. 中国工程科学, 2022, 24(3): 20-28. REN H, LIU M, WANG Z G, et al. Security of manganese resources and industrial chain in China[J]. Strategic Study of CAE, 2022, 24(3): 20-28 (in Chinese). [2] 何德军, 舒建成, 陈梦君, 等. 电解锰渣建材资源化研究现状与展望[J]. 化工进展, 2020, 39(10): 4227-4237. HE D J, SHU J C, CHEN M J, et al. Current status and future prospects of electrolytic manganese residue reused as building materials[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4227-4237 (in Chinese). [3] 鄢永庚, 王跃虎, 赵 健, 等. 基于CiteSpace的电解锰渣无害化与资源化处理现状以及发展趋势分析[J]. 中国矿业, 2022, 31(11): 9-17. YAN Y G, WANG Y H, ZHAO J, et al. Analysis of the status quo and development trend of harmless and resource treatment of electrolytic manganese slag based on CiteSpace[J]. China Mining Magazine, 2022, 31(11): 9-17 (in Chinese). [4] WANG F, LONG G C, MA K L, et al. Recyling manganese-rich electrolytic residues: a review[J]. Environmental Chemistry Letters, 2023, 21(4): 2251-2284. [5] 李昌新, 喻 源, 张庆武, 等. 合成条件对电解锰渣制备沸石过程中沸石种类和性能的影响[J]. 中南大学学报(自然科学版), 2019, 50(12): 2932-2937. LI C X, YU Y, ZHANG Q W, et al. Effects of synthesis conditions on formation process and property of zeolite prepared from electrolytic manganese residue[J]. Journal of Central South University (Science and Technology), 2019, 50(12): 2932-2937 (in Chinese). [6] 李昌新, 喻 源, 张庆武, 等. 合成条件对电解锰渣制备水化硅酸钙过程中结构和性能的影响[J]. 中国有色金属学报, 2020, 30(6): 1368-1376. LI C X, YU Y, ZHANG Q W, et al. Effects of synthesis conditions on formation process and property of calcium silicate hydrate prepared from electrolytic manganese residue[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1368-1376 (in Chinese). [7] 张 歆, 刘 方, 朱 健, 等. 基于电解锰渣-磷石膏复合胶凝材料的制备与表征[J]. 硅酸盐通报, 2021, 40(5): 1610-1619. ZHANG X, LIU F, ZHU J, et al. Preparation and characterization of composite cementitious material based on electrolytic manganese residue-phosphogypsum[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1610-1619 (in Chinese). [8] LAN J R, SUN Y, TIAN H, et al. Electrolytic manganese residue-based cement for manganese ore pit backfilling: performance and mechanism[J]. Journal of Hazardous Materials, 2021, 411: 124941. [9] WANG F, LONG G C, BAI M, et al. Application of electrolytic manganese residues in cement products through pozzolanic activity motivation and calcination[J]. Journal of Cleaner Production, 2022, 338: 130629. [10] LIU X Y, REN Y Y, ZHANG Z Q, et al. Harmless treatment of electrolytic manganese residue: ammonia nitrogen recovery, preparation of struvite and nonsintered bricks[J]. Chemical Engineering Journal, 2023, 455: 140739. [11] 王继林, 龙广成, 董荣珍, 等. 掺电解锰渣砂浆的强度与微结构及碳排放分析[J]. 铁道科学与工程学报, 2023, 20(4): 1382-1391. WANG J L, LONG G C, DONG R Z, et al. Analysis of strength, microstructure and carbon emission of mortar mixed with electrolytic manganese residue[J]. Journal of Railway Science and Engineering, 2023, 20(4): 1382-1391 (in Chinese). [12] WANG F, LONG G C, BAI M, et al. Feasibility of low-carbon electrolytic manganese residue-based supplementary cementitious materials[J]. Science of The Total Environment, 2023, 883: 163672. [13] WANG F, LONG G C, ZHOU J L. Deep insight into green remediation and hazard-free disposal of electrolytic manganese residue-based cementitious material[J]. Science of The Total Environment, 2023, 894: 165049. [14] 冯 云, 陈延信, 刘 飞, 等. 电解锰渣用于水泥缓凝剂的生产研究[J]. 现代化工, 2006, 26(2): 57-60. FENG Y, CHEN Y X, LIU F, et al. Studies on replacement of gypsum by manganese slag as retarder in cement manufacture[J]. Modern Chemical Industry, 2006, 26(2): 57-60 (in Chinese). [15] 付 勇, 乔宏霞, 冯 琼, 等. 蒸养条件对电解锰渣水泥胶砂力学性能与微观形貌的影响[J]. 复合材料学报, 2024, 41(12): 6826-6843. FU Y, QIAO H X, FENG Q, et al. Effects of steam curing conditions on mechanical properties and microstructure of electrolytic manganese residue-cement mortar[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6826-6843 (in Chinese). [16] WANG D Q, FANG J R, WANG Q, et al. Utilizing desulphurized electrolytic-manganese residue as a mineral admixture: a feasibility study[J]. Cement and Concrete Composites, 2022, 134: 104822. [17] ZHOU Y X. Reusing electrolytic manganese residue as an activator: the effect of calcination on its mineralogy and activity[J]. Construction and Building Materials, 2021, 294: 123533. [18] WANG D Q, WANG Q, XUE J F. Reuse of hazardous electrolytic manganese residue: detailed leaching characterization and novel application as a cementitious material[J]. Resources, Conservation and Recycling, 2020, 154: 104645. [19] HE W L, LI R, ZHANG Y, et al. Synergistic use of electrolytic manganese residue and barium slag to prepare belite-sulphoaluminate cement study[J]. Construction and Building Materials, 2022, 326: 126672. [20] ZHAN X Y, WANG Y, WANG L A, et al. Migration, solidification/stabilization mechanism of heavy metal in lightweight ceramisite from co-sintering fly ash and electrolytic manganese residue[J]. Process Safety and Environmental Protection, 2023, 173: 485-494. [21] ZHANG Y L, LIU X M, XU Y T, et al. Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: mechanical properties and Mn2+ stabilization/solidification characterization[J]. Journal of Hazardous Materials, 2020, 390: 122188. [22] WANG F, LONG G C, ZHOU J L. Enhanced green remediation and refinement disposal of electrolytic manganese residue using air-jet milling and horizontal-shaking leaching[J]. Journal of Hazardous Materials, 2024, 465: 133419. [23] 白 敏, 龙广成. 大掺量电解锰渣制备生态型低强度水泥基材料[J]. 新型建筑材料, 2023, 50(6): 55-60. BAI M, LONG G C. Preparation of ecological cement-based materials with low strength by mixing large amount of electrolytic manganese residue[J]. New Building Materials, 2023, 50(6): 55-60 (in Chinese). [24] WANG F, LONG G C, BAI M, et al. Cleaner and safer disposal of electrolytic manganese residues in cement-based materials using direct electric curing[J]. Journal of Cleaner Production, 2022, 356: 131842. [25] BAI M, LONG G C, WANG F. Properties and microstructural characteristics of manganese tailing sand concrete[J]. Materials, 2022, 15(16): 5583. [26] 白 敏. 电解锰渣高强陶粒及其透水砖制备与性能研究[D]. 长沙: 中南大学, 2023. BAI M. Preparation and properties of high-strength ceramsite and permeable brick from electrolytic manganese residue[D]. Changsha: Central South University, 2023 (in Chinese). [27] WANG F, LONG G C, BAI M, et al. A new perspective on Belite-ye’elimite-ferrite cement manufactured from electrolytic manganese residue: production, properties, and environmental analysis[J]. Cement and Concrete Research, 2023, 163: 107019. [28] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12—2019[S]. Beijing: China Architecture & Building Press, 2019 (in Chinese). [29] 中华人民共和国工业和信息化部. 透水混凝土: JC/T 2558—2020[S]. 北京: 中国建材工业出版社, 2020. Ministry of Industry and Information Technology of the People’s Republic of China. Permeable concrete: JC/T 2558—2020[S]. Beijing: China Building Materials Press, 2020 (in Chinese). [30] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for test methods of physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019 (in Chinese). [31] INTERNATIONAL A. Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens: ASTM C215—19[S]. West Conshohocken, PA: ASTM International, 2019. [32] 国家市场监督管理总局, 国家标准化管理委员会. 透水路面砖和透水路面板: GB/T 25993—2023[S]. 北京: 中国标准出版社, 2023. State Administration for Market Regulation, Standardization Administration of China. Permeable paving bricks and permeable slabs: GB/T 25993—2023[S]. Beijing: Standards Press of China, 2023 (in Chinese). [33] 叶 芬, 成 昊, 向 媛, 等. 利用电解锰渣制备陶瓷骨料及在混凝土中的应用[J]. 无机盐工业, 2024, 56(6): 127-132. YE F, CHENG H, XIANG Y, et al. Preparation of ceramic aggregate from electrolytic manganese slag and its application in concrete[J]. Inorganic Chemicals Industry, 2024, 56(6): 127-132(in Chinese). [34] LI M K, HE Z G, ZHONG H, et al. Multi-walled carbon nanotubes facilitated Roxarsone elimination in SR-AOPs by accelerating electron transfer in modified electrolytic manganese residue and forming surface activated-complexes[J]. Water Research, 2021, 200: 117266. [35] SHI Y Y, LONG G C, WANG F, et al. Innovative co-treatment technology for effective disposal of electrolytic manganese residue[J]. Environmental Pollution, 2023, 335: 122234. [36] SHI C J, QU B, PROVIS J L. Recent progress in low-carbon binders[J]. Cement and Concrete Research, 2019, 122: 227-250. [37] SHAH I H, MILLER S A, JIANG D Q, et al. Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons[J]. Nature Communications, 2022, 13(1): 5758. |