[1] LONG W Q, WANG S S, LU C Y, et al. Quantitative assessment of energy conservation potential and environmental benefits of an iron and steel plant in China[J]. Journal of Cleaner Production, 2020, 273: 123163. [2] WANG X B, LI X Y, YAN X, et al. Environmental risks for application of iron and steel slags in soils in China: a review[J]. Pedosphere, 2021, 31(1): 28-42. [3] ZHAO J H, YAN P Y, WANG D M. Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle[J]. Journal of Cleaner Production, 2017, 156: 50-61. [4] QIAO Y F, WANG G. Recent status of production, administration policies, and low-carbon technology development of China’s steel industry[J]. Metals, 2024, 14(4): 480. [5] 吕为建, 王 龙, 张 浩, 等. 钢铁冶金尘泥提锌工艺的研究进展[J]. 钢铁, 2024, 59(1): 157-167. LÜ W J, WANG L, ZHANG H, et al. Research on progress of zinc extraction process from iron and steel metallurgical sludge[J]. Iron & Steel, 2024, 59(1): 157-167 (in Chinese). [6] 牛福生, 倪 文, 张晋霞, 等. 中国钢铁冶金尘泥资源化利用现状及发展方向[J]. 钢铁, 2016, 51(8): 1-5+10. NIU F S, NI W, ZHANG J X, et al. Current situation and development of comprehensive utilization of metallurgical dusts and slimes in China[J]. Iron & Steel, 2016, 51(8): 1-5+10 (in Chinese). [7] 孟昕阳, 李 宇. 提锌二次尾渣制备微晶玻璃的工艺优化[J]. 有色金属科学与工程, 2020, 11(2): 27-33. MENG X Y, LI Y. Process optimization of preparing glass-ceramic from secondary slag of zinc extraction[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 27-33 (in Chinese). [8] 沈维民, 叶恒棣, 张志波, 等. 钢铁工业含锌尘泥回转窑处置技术的应用进展[J]. 烧结球团, 2024, 49(1): 11-17+55. SHEN W M, YE H D, ZHANG Z B, et al. Progress in application of disposal technology for zinc-containing dust sludge rotary kiln in iron and steel industry[J]. Sintering and Pelletizing, 2024, 49(1): 11-17+55 (in Chinese). [9] 曾 涛, 邓志敢, 樊 刚, 等. 湿法炼锌窑渣与污酸联合浸出新工艺[J]. 中国有色金属学报, 2019, 29(12): 2826-2835. ZENG T, DENG Z G, FAN G, et al. New process for combined leaching of zinc kiln slag and waste acid from zinc hydrometallurgy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(12): 2826-2835 (in Chinese). [10] 胡晓军, 郭 婷, 周国治. 含锌冶金粉尘处理技术的发展和现状[J]. 钢铁研究学报, 2011, 23(7): 1-5+9. HU X J, GUO T, ZHOU G Z. Development and current states of techniques of disposal zinc-containing dust in metallurgical industry[J]. Journal of Iron and Steel Research, 2011, 23(7): 1-5+9 (in Chinese). [11] 侯霖杰, 孟昕阳, 王宏宇, 等. 铜渣改质、磁选及磁选尾渣制备陶瓷的基础研究[J]. 有色金属科学与工程, 2021, 12(2): 23-29. HOU L J, MENG X Y, WANG H Y, et al. Basic research on copper slag modification, magnetic separation and preparation of ceramics from magnetic separation tailings[J]. Nonferrous Metals Science and Engineering, 2021, 12(2): 23-29 (in Chinese). [12] 艾仙斌, 李 宇, 郭大龙, 等. 以钢渣为原料的SiO2-CaO-Al2O3系陶瓷烧结机理[J]. 中南大学学报(自然科学版), 2015, 46(5): 1583-1587. AI X B, LI Y, GUO D L, et al. Sintering mechanism of SiO2-CaO-Al2O3 ceramic from steel slag[J]. Journal of Central South University (Science and Technology), 2015, 46(5): 1583-1587 (in Chinese). [13] 赵立华. 利用钢渣制备高钙高铁陶瓷的基础及应用研究[D]. 北京: 北京科技大学, 2017. ZHAO L H. Study on the basis and application of preparing high calcium and high iron ceramics from steel slag[D]. Beijing: University of Science and Technology Beijing, 2017 (in Chinese). [14] 裴德健. 利用冶金渣制备硅钙基多元体系陶瓷的机理及应用研究[D]. 北京: 北京科技大学, 2019. PEI D J. Study on the mechanism and application of silicon-calcium-based multicomponent ceramics prepared from metallurgical slag[D]. Beijing: University of Science and Technology Beijing, 2019 (in Chinese). [15] 徐会显, 徐江宇, 熊正伟, 等. 荆江三口疏浚泥资源化利用研究[J]. 环境科学与技术, 2020, 43(增刊1): 128-133. XU H X, XU J Y, XIONG Z W, et al. Reasearch on resource utilization of dredged mud in the three outlets of Jingjiang river[J]. Environmental Science & Technology, 2020, 43(supplement 1): 128-133 (in Chinese). [16] 肖承楠. 疏浚泥资源化可行性研究[D]. 青岛: 中国海洋大学, 2012. XIAO C N. Feasibility study on reclamation of dredged mud[D]. Qingdao: Ocean University of China, 2012 (in Chinese). [17] 彭孟啟. 应用疏浚泥制备透水砖及性能研究[D]. 广州: 华南理工大学, 2013. PENG M Q. Study on preparation and properties of permeable brick with dredged mud[D]. Guangzhou: South China University of Technology, 2013 (in Chinese). [18] WANG H Y. Durability of self-consolidating lightweight aggregate concrete using dredged silt[J]. Construction and Building Materials, 2009, 23(6): 2332-2337. [19] 郭新营. 碳含量对金属陶瓷组织和力学性能的影响[J]. 有色冶金设计与研究, 2022, 43(3): 22-24+37. GUO X Y. Effect of carbon content on microstructure and mechanical properties of cermet[J]. Nonferrous Metals Engineering & Research, 2022, 43(3): 22-24+37 (in Chinese). [20] 刘宝友, 岳新艳, 冯 东, 等. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(增刊1): 169-171. LIU B Y, YUE X Y, FENG D, et al. Effect of carbon content on microstructure and properties of pressureless-sintered silicon carbide[J]. Materials Reports, 2021, 35(supplement 1): 169-171 (in Chinese). [21] YANG G Q, ZENG H T, MA P H, et al. Effects of carbon content on the microstructure and mechanical properties of MoCoB-Co cermets[J]. Ceramics International, 2024, 50(13): 22653-22661. [22] 刘东旭, 侯红臣, 陈建军, 等. 碳含量对反应熔渗法制备SiC晶须增强碳化硅陶瓷性能的影响研究[J]. 硅酸盐通报, 2019, 38(12): 4007-4012. LIU D X, HOU H C, CHEN J J, et al. Effect of carbon content on properties of SiC whiskers reinforced silicon carbide ceramic prepared by reactive melt infiltration[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 4007-4012 (in Chinese). [23] NATSUI S, NISHIMURA I, ITO A, et al. Tracking combustion behavior of copper monosulfide, ferrous sulfide, and chalcopyrite tablets by high-speed microscopic videography[J]. Chemical Engineering Science, 2023, 267: 118355. [24] WANG Z Q, DENG S H, ZHANG Q Y, et al. Effects of carbothermal reduction of iron oxide on microstructures and electrochemical properties of the carbon foams[J]. Journal of Alloys and Compounds, 2022, 890: 161804. [25] 张雪梅, 徐仁伟, 孙淑英, 等. 硫酸钙的还原热分解特性研究[J]. 环境科学与技术, 2010, 33(增刊2): 144-148. ZHANG X M, XU R W, SUN S Y, et al. Study on the character of calcium sulfate reducing decomposition[J]. Environmental Science & Technology, 2010, 33(supplement 2): 144-148 (in Chinese). [26] YANG P, SUO Y L, LIU L, et al. Study on the curing mechanism of cemented backfill materials prepared from sodium sulfate modified coal gasification slag[J]. Journal of Building Engineering, 2022, 62: 105318. [27] PI Y L, ZHANG W H, ZHANG Y S, et al. Migration and transformation of heavy metals in glass-ceramics and the mechanism of stabilization[J]. Ceramics International, 2021, 47(17): 24663-24674. [28] DU Y S, GUO Y H, WANG G Y, et al. Preparation of glass-ceramics from blast furnace slag and its heavy metal curing properties[J]. Journal of Material Cycles and Waste Management, 2023, 25(5): 3081-3092. [29] GUO Y H, DU Y S, WEI Y, et al. Crystallization, microstructural evolution, heavy metals migration, and solidification mechanism of blast furnace slag glass-ceramics[J]. Ceramics International, 2024, 50(11): 18462-18472. [30] WANG G Y, DU Y S, GUO Y H, et al. Existing state and solidification characteristics of heavy metals in glass-ceramics from Mn-bearing blast furnace slag[J]. Environmental Progress & Sustainable Energy, 2023, 42(2): e14019. |