欢迎访问《硅酸盐通报》官方网站,今天是 2025年3月30日 星期日
分享到:

硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (2): 690-699.DOI: 10.16552/j.cnki.issn1001-1625.2024.1089

• 陶瓷 • 上一篇    下一篇

活性金属法对非氧化物陶瓷封接适用性及其作用机理分析

姚忠樱, 崔鸽, 任瑞康, 任佳乐, 常逸文, 张洪波, 旷峰华   

  1. 中国建筑材料科学研究总院有限公司陶瓷科学研究院,北京 100024
  • 收稿日期:2024-09-12 修订日期:2024-11-04 出版日期:2025-02-15 发布日期:2025-02-28
  • 通信作者: 旷峰华,教授级高级工程师。E-mail:fenghuakuang@163.com
  • 作者简介:姚忠樱(1994—),女,工程师。主要从事陶瓷粉体改性、陶瓷成型、陶瓷金属封接以及陶瓷基板抛光的研究。E-mail:yzybtbu@163.com

Analysis on Applicability and Action Mechanism of Active Metal Method for Sealing Nonoxide Ceramics

YAO Zhongying, CUI Ge, REN Ruikang, REN Jiale, CHANG Yiwen, ZHANG Hongbo, KUANG Fenghua   

  1. Ceramics Science Institute, China Building Materials Academy Co., Ltd., Beijing 100024, China
  • Received:2024-09-12 Revised:2024-11-04 Published:2025-02-15 Online:2025-02-28

摘要: 采用活性金属法在真空焊接炉中分别封接同组分的非氧化物陶瓷-非氧化物陶瓷(Si3N4-Si3N4、AlN-AlN、SiC-SiC)及不同组分的非氧化物陶瓷-金属材料(Si3N4-4J29、Si3N4-304不锈钢、Si3N4-无氧铜、SiC-4J29、SiC-304不锈钢、SiC -无氧铜、AlN -4J29、AlN -304不锈钢、AlN-无氧铜),测试样品的封接强度并采用SEM和EDS对封接界面的形貌和元素成分进行测试。结果表明:活性金属法可适用于Si3N4-Si3N4、AlN-AlN、SiC-SiC、Si3N4-4J29、Si3N4-304不锈钢、Si3N4-无氧铜、AlN-304不锈钢、SiC-304不锈钢及SiC-无氧铜的封接,其中非氧化物陶瓷-非氧化物陶瓷封接样品中SiC-SiC的封接强度最大,达到129.4 MPa;非氧化物陶瓷-金属材料封接样品中Si3N4-304不锈钢(101.9 MPa)、SiC-304不锈钢(135.7 MPa)、AlN-304不锈钢(79.1 MPa)的封接强度较大;活性金属法的核心机理在于焊料中的Ti在封接温度下会发生迁移,一部分从焊料中心区域向陶瓷界面扩散,并与N、C等元素形成TiN、TiC等化合物,从而形成较为致密的界面层,还有少量从焊料中心向金属扩散,与金属发生固熔反应,形成金属间化合物,进而形成实现异质材料之间的高强度封接。

关键词: 非氧化物陶瓷, 活性金属法, 封接强度, 作用机理

Abstract: This article used the active metal method to seal nonoxide ceramics-nonoxide ceramics of the same composition (Si3N4-Si3N4, AlN-AlN, SiC-SiC) and nonoxide ceramics-metal material of different composition (Si3N4-4J29, Si3N4-304 stainless steel, Si3N4-oxygen free copper, SiC-4J29, SiC-304 stainless steel, SiC-oxygen free copper, AlN-4J29, AlN-304 stainless steel, AlN-oxygen free copper) in a vacuum welding furnace. The sealing strength of the samples was tested, and the morphology and elemental composition of the sealing interface were tested using SEM and EDS. The results show that the active metal method can be applied to the sealing of Si3N4- Si3N4, AlN-AlN, SiC-SiC, Si3N4-4J29, Si3N4-304 stainless steel, Si3N4-oxygen free copper, AlN-304 stainless steel, SiC-304 stainless steel, and SiC-oxygen free copper. Among them, the SiC-SiC sealing strength is the highest in the nonoxide ceramics-nonoxide ceramics sealing sample, reaching 129.4 MPa. The sealing strength of Si3N4-304 stainless steel (101.9 MPa), SiC-304 stainless steel (135.7 MPa), and AlN-304 stainless steel (79.1 MPa) in the nonoxide ceramics-metal material sealing samples are the higher. The core mechanism of the active metal method is that Ti in the solder migrates at the sealing temperature, with a portion diffusing from the center of the solder to the ceramics interface and forming TiN, TiC and other compounds with elements such as N and C, thus forming a relatively dense interface layer. There is also a small amount diffusing from the center of the solder to the metal, undergoing a solid fusion reaction with the metal, forming intermetallic compounds, and achieving high-strength sealing between heterogeneous materials.

Key words: nonoxide ceramics, active metal method, sealing strength, action mechanism

中图分类号: