[1] VEETIL S P, HITCH M. Recent developments and challenges of aqueous mineral carbonation: a review[J]. International Journal of Environmental Science and Technology, 2020, 17(10): 4359-4380. [2] 徐明超, 郑克仁, 张禛庆, 等. 钢渣高效碳化及无定形二氧化硅制备[J]. 建筑材料学报, 2024, 27(10): 955-961. XU M C, ZHENG K R, ZHANG Z Q, et al. High-efficiency carbonation of steel slag and preparation of amorphous silica[J]. Journal of Building Materials, 2024, 27(10): 955-961 (in Chinese). [3] SETIÉN J, HERNÁNDEZ D, GONZÁLEZ J J. Characterization of ladle furnace basic slag for use as a construction material[J]. Construction and Building Materials, 2009, 23(5): 1788-1794. [4] WESSELSKY A, JENSEN O M. Synthesis of pure Portland cement phases[J]. Cement and Concrete Research, 2009, 39(11): 973-980. [5] 邵旭阳, 贺智敏, 陈 鑫. 碳化处理含钢渣建筑材料的体积安定性研究进展[J]. 施工技术(中英文), 2024, 53(16): 1-10. SHAO X Y, HE Z M, CHEN X. Research progress on volume stability of building materials containing carbonated steel slag[J]. Construction Technology, 2024, 53(16): 1-10 (in Chinese). [6] 许扬帆, 钱春香, 裴嘉炜. 颗粒态γ-C2S、β-C2S、C3S矿物固碳速率的差异及微观机理[J]. 硅酸盐学报, 2025, 53(2): 325-338. XU Y F, QIAN C X, PEI J W. Mechanism investigation and difference in carbon sequestration rates of granular γ-C2S, β-C2S and C3S minerals[J]. Journal of the Chinese Ceramic Society, 2025, 53(2): 325-338 (in Chinese). [7] 刘松辉, 管学茂, 邱 满, 等. 通过加速碳化激发γ-C2S矿物的活性[J]. 硅酸盐学报, 2016, 44(5): 658-662. LIU S H, GUAN X M, QIU M, et al. Activation of γ-C2S mineral by accelerated carbonation[J]. Journal of the Chinese Ceramic Society, 2016, 44(5): 658-662 (in Chinese). [8] MU Y D, LIU Z C, WANG F Z, et al. Carbonation characteristics of γ-dicalcium silicate for low-carbon building material[J]. Construction and Building Materials, 2018, 177: 322-331. [9] 朱 明, 雪高瑞, 穆元冬. γ-C2S和β-C2S的碳化与水化活性研究[J]. 硅酸盐通报, 2017, 36(9): 3036-3040+3052. ZHU M, XUE G R, MU Y D. Carbonation and hydration activity of γ-C2S and β-C2S[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(9): 3036-3040+3052 (in Chinese). [10] XU B, YI Y L. Immobilization of lead (Pb) using ladle furnace slag and carbon dioxide[J]. Chemosphere, 2022, 308: 136387. [11] GOMARI K E, GOMARI S R, HUGHES D, et al. Exploring the potential of steel slag waste for carbon sequestration through mineral carbonation: a comparative study of blast-furnace slag and ladle slag[J]. Journal of Environmental Management, 2024, 351: 119835. [12] YI Y R, LIN Y, DU Y C, et al. Accelerated carbonation of ladle furnace slag and characterization of its mineral phase[J]. Construction and Building Materials, 2021, 276: 122235. [13] VEGAS I, OLEAGA A, GARCÍA-CORTÉS V, et al. Assessment of steelmaking slags subjected to accelerated carbonation[J]. Ain Shams Engineering Journal, 2024, 15(7): 102790. [14] MAHOUTIAN M, SHAO Y X, MUCCI A, et al. Carbonation and hydration behavior of EAF and BOF steel slag binders[J]. Materials and Structures, 2015, 48(9): 3075-3085. [15] WANG D, CHANG J, ANSARI W S. The effects of carbonation and hydration on the mineralogy and microstructure of basic oxygen furnace slag products[J]. Journal of CO2 Utilization, 2019, 34: 87-98. [16] 张恒飞, 刘茂举, 王东哲, 等. 钢渣碳化技术影响因素的研究进展[J]. 中国建材科技, 2023, 32(1): 74-78. ZHANG H F, LIU M J, WANG D Z, et al. Research progress of influencing factors of steel slag carbonation technology[J]. China Building Materials Science & Technology, 2023, 32(1): 74-78 (in Chinese). [17] DE SILVA P, BUCEA L, MOOREHEAD D R, et al. Carbonate binders: reaction kinetics, strength and microstructure[J]. Cement and Concrete Composites, 2006, 28(7): 613-620. [18] MU Y D, LIU Z C, WANG F Z. Study on heat resistance of carbonated γ-C2S binder: strength, phase and microstructure evolution[J]. Construction and Building Materials, 2022, 329: 127049. [19] GHOULEH Z, GUTHRIE R I L, SHAO Y X. Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete[J]. Journal of CO2 Utilization, 2017, 18: 125-138. [20] 梅杰琼, 陆诗建, 任雪峰, 等. CO2间接矿化工业固废制备多晶型碳酸钙研究进展[J]. 洁净煤技术, 2024, 30(3): 59-71. MEI J Q, LU S J, REN X F, et al. Preparation of various crystal forms of calcium carbonate from industrial solid waste by CO2 indirect mineralization[J]. Clean Coal Technology, 2024, 30(3): 59-71 (in Chinese). [21] TAN Y C, LIU Z C, WANG F Z. Effect of temperature on the carbonation behavior of γ-C2S compacts[J]. Cement and Concrete Composites, 2022, 133: 104652. [22] 王 雪. 钢渣碳化潜能评估及脱硫石膏激发钢渣碳化建材的制备[D]. 北京: 北京科技大学, 2022: 93-95. WANG X. Carbonization potential evaluation of steel slag and preparation of steel slag carbonized building materials activated by desulfurization gypsum[D]. Beijing: University of Science and Technology Beijing, 2022: 93-95 (in Chinese). [23] 穆元冬. 硅酸钙矿物碳酸化固化机理及其材料性能提升机制研究[D]. 武汉: 武汉理工大学, 2019: 57-59. MU Y D. Study on the carbonation curing mechanism of calcium silicate minerals and the mechanism of material performance improvement[D]. Wuhan: Wuhan University of Technology, 2019: 57-59 (in Chinese). [24] ZHANG S P, GHOULEH Z, LIU J Y, et al. Converting ladle slag into high-strength cementing material by flue gas carbonation at different temperatures[J]. Resources, Conservation and Recycling, 2021, 174: 105819. [25] GHOULEH Z, GUTHRIE R I L, SHAO Y X. High-strength KOBM steel slag binder activated by carbonation[J]. Construction and Building Materials, 2015, 99: 175-183. [26] LIU S H, RONG P J, ZHANG C, et al. Preparation and carbonation hardening of low calcium CO2 sequestration materials from waste concrete powder and calcium carbide slag[J]. Cement and Concrete Composites, 2023, 141: 105151. [27] ZHAO S X, LIU Z C, MU Y D, et al. Effect of chitosan on the carbonation behavior of γ-C2S[J]. Cement and Concrete Composites, 2020, 111: 103637. [28] LIN S Q, CHEN P, XIANG W H, et al. Exploring the effect of moisture on CO2 diffusion and particle cementation in carbonated steel slag[J]. Applied Sciences, 2024, 14(9): 3631. |