[1] PHETCHUAY C, HORPIBULSUK S, ARULRAJAH A, et al. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer[J]. Applied Clay Science, 2016, 127: 134-142. [2] 王泽东, 周盛涛, 方 文, 等. 膨润土改性水泥土力学特性试验研究[J]. 硅酸盐通报, 2019, 38(10): 3287-3292. WANG Z D, ZHOU S T, FANG W, et al. Experimental study on mechanical properties of cement soil modified by bentonite[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3287-3292 (in Chinese). [3] SCRIVENER K L, KIRKPATRICK R J. Innovation in use and research on cementitious material[J]. Cement and Concrete Research, 2008, 38(2): 128-136. [4] ZHANG P, ZHENG Y X, WANG K J, et al. A review on properties of fresh and hardened geopolymer mortar[J]. Composites Part B: Engineering, 2018, 152: 79-95. [5] LI N, FARZADNIA N, SHI C J. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation[J]. Cement and Concrete Research, 2017, 100: 214-226. [6] DASSEKPO J M, FENG W P, LI Y R, et al. Synthesis and characterization of alkali-activated loess and its application as protective coating[J]. Construction and Building Materials, 2021, 282: 122631. [7] MIN Y F, WU J, LI B, et al. Effects of fly ash content on the strength development of soft clay stabilized by one-part geopolymer under curing stress[J]. Journal of Materials in Civil Engineering, 2021, 33(10): 04021274. [8] SAJEDI F, RAZAK H A. The effect of chemical activators on early strength of ordinary Portland cement-slag mortars[J]. Construction and Building Materials, 2010, 24(10): 1944-1951. [9] 田 威, 云 伟, 贺文昊, 等. 矿渣基地聚物固化黄土抗压强度及固化机制研究[J/OL]. 土木工程学报, 2024: 1-13 (2024-07-10) [2025-02-28]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=TMGC20240705003&dbname=CJFD&dbcode=CJFQ. TIAN W, YUN W, HE W H, et al. Research on compressive strength and curing mechanism of slag-based polymer-cured loess[J/OL]. China Industrial Economics, 2024: 1-13 (2024-07-10) [2025-02-28]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=TMGC20240705003&dbname=CJFD&dbcode=CJFQ (in Chinese). [10] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for geotechnical test methods: GB/T 50123—2019[S]. Beijing: China Plan Publishing House, 2019 (in Chinese). [11] 中华人民共和国住房和城乡建设部. 水泥土配合比设计规程: JGJ/T 233—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Cement-soil mixture ratio design specification: JGJ/T 233—2011[S]. Beijing: China Construction Industry Press, 2011 (in Chinese). [12] 郑溢雯, 吴 俊, 杨爱武, 等. 采用固体硅酸钠激发的一步法地质聚合物在软土固化中的适用性研究[J]. 岩土力学, 2024, 45(7): 2072-2084. ZHENG Y W, WU J, YANG A W, et al. Feasibility study on the one-part geopolymer activated by solid sodium silicate for soft soil solidification[J]. Rock and Soil Mechanics, 2024, 45(7): 2072-2084 (in Chinese). [13] 邵吉成, 袁 波, 骆嘉成, 等. 生石灰固化温州淤泥的物理力学性质研究[J]. 工程地质学报, 2023, 31(2): 421-431. SHAO J C, YUAN B, LUO J C, et al. Physical and mechanical properties of sludge in Wenzhou solidified by quicklime[J]. Journal of Engineering Geology, 2023, 31(2): 421-431 (in Chinese). [14] SATO T, BEAUDOIN J J. Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials[J]. Advances in Cement Research, 2011, 23(1): 33-43. [15] YU H Y, XU M X, CHEN C N, et al. A review on the porous geopolymer preparation for structural and functional materials applications[J]. International Journal of Applied Ceramic Technology, 2022, 19(4): 1793-1813. [16] CASTILLO H, COLLADO H, DROGUETT T, et al. State of the art of geopolymers: a review[J]. e-Polymers, 2022, 22(1): 108-124. [17] 罗正东, 章本本, 苏永华, 等. 地质聚合物固化土研究现状及展望[J]. 土木与环境工程学报, 2024, 46(6): 31-43. LUO Z D, ZHANG B B, SU Y H, et al. State-of-the-art research and prospect of geopolymer solidified soil[J]. Journal of Civil and Environmental Engineering, 2024, 46(6): 31-43 (in Chinese). [18] 林 彤, 刘祖德. 粉煤灰与生石灰加固软土的室内试验研究[J]. 岩土力学, 2003, 24(6): 1049-1052. LIN T, LIU Z D. Study on indoor tests of fly ash and quick lime improving soft soils[J]. Rock and Soil Mechanics, 2003, 24(6): 1049-1052 (in Chinese). [19] CHEN J J, SORELLI L, VANDAMME M, et al. A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: evidence for C-S-H/Ca(OH)2 nanocomposites[J]. Journal of the American Ceramic Society, 2010, 93(5): 1484-1493. [20] 马鹏传, 李 兴, 温振宇, 等. 粉煤灰的活性激发与机理研究进展[J]. 无机盐工业, 2021, 53(10): 28-35. MA P C, LI X, WEN Z Y, et al. Research progress on activation and mechanism of fly ash[J]. Inorganic Chemicals Industry, 2021, 53(10): 28-35 (in Chinese). [21] WANG C W, ZHAO L Y, GUO Z Y, et al. Mechanistic study of fly ash activity enhanced by high temperature to strengthen cementitious materials[J]. Construction and Building Materials, 2024, 416: 135026. [22] 惠会清, 胡同康, 王新东. 石灰、粉煤灰改良膨胀土性质机理[J]. 长安大学学报(自然科学版), 2006, 26(2): 34-37. HUI H Q, HU T K, WANG X D. Improved mechanism of expansive soils by lime and fly-ash[J]. Journal of Chang'an University (Natural Science Edition), 2006, 26(2): 34-37 (in Chinese). [23] 安 赛, 王宝民, 陈文秀, 等. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. AN S, WANG B M, CHEN W X, et al. Interaction mechanism of carbide slag activating slag-fly ash composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1333-1343 (in Chinese). [24] NATH P, SARKER P K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition[J]. Construction and Building Materials, 2014, 66: 163-171. |