[1] 吴玉洁, 熊 鹰. 建筑钢结构防火设计关键技术与应用[J]. 今日消防, 2024, 9(8): 113-115. WU Y J, XIONG Y. Key technology and application of fire protection design for building steel structure[J]. Fire Protection Today, 2024, 9(8): 113-115 (in Chinese). [2] 杨 明, 盘洪玉. 钢结构抗火设计研究与防护进展[J]. 四川建材, 2023, 49(12): 211-212+224. YANG M, PAN H Y. Progress in fire resistance design and protection of steel structures[J]. Sichuan Building Materials, 2023, 49(12): 211-212+224 (in Chinese). [3] 陈永明, 付振平, 郭必泛, 等. 防火涂料的研究进展[J]. 涂料工业, 2024, 54(3): 54-58+65. CHEN Y M, FU Z P, GUO B F, et al. Research progress of fire retardant coatings[J]. Paint & Coatings Industry, 2024, 54(3): 54-58+65 (in Chinese). [4] 周立东, 葛俊伟, 楼国彪. 钢结构膨胀型防火涂料的现状及发展趋势[J]. 上海涂料, 2023, 61(6): 26-31. ZHOU L D, GE J W, LOU G B. Current situation and development trend of intumescent fireproof coatings for steel structures[J]. Shanghai Coatings, 2023, 61(6): 26-31 (in Chinese). [5] 李 秋, 姜雨杭, 耿海宁, 等. 钾基地聚物防火涂料性能与陶瓷化研究[J]. 硅酸盐通报, 2022, 41(5): 1805-1812. LI Q, JIANG Y H, GENG H N, et al. Properties and ceramization of potassium-based geopolymer fire resistance coating[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1805-1812 (in Chinese). [6] NOVAIS R M, ASCENSÃO G, BURUBERRI L H, et al. Influence of blowing agent on the fresh- and hardened-state properties of lightweight geopolymers[J]. Materials & Design, 2016, 108: 551-559. [7] IBRAHIM J F M, ŞAHIN E İ, KABATAS M A B, et al. Sustainable fabrication of lightweight geopolymer foams from silica-fume and zeolite tuffs: utilizing Al as foaming agent for thermal insulation[J]. Case Studies in Construction Materials, 2024, 21: e04024. [8] 石行波, 霍冀川, 李 娴, 等. 动物蛋白发泡剂制备泡沫混凝土的研究[J]. 硅酸盐通报, 2009, 28(3): 609-612+623. SHI X B, HUO J C, LI X, et al. Study on preparation of foamed concrete by animal protein foaming agent[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(3): 609-612+623 (in Chinese). [9] HAJIMOHAMMADI A, NGO T, MENDIS P, et al. Alkali activated slag foams: the effect of the alkali reaction on foam characteristics[J]. Journal of Cleaner Production, 2017, 147: 330-339. [10] ZHONG Z W, CHEN Y Q, ZHAO H H, et al. Effect of foaming agent on physical and mechanical properties of foamed phosphogypsum[J]. Journal of Materials in Civil Engineering, 2024, 36(3): 04023611. [11] XU F, GU G H, ZHANG W, et al. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method[J]. Ceramics International, 2018, 44(16): 19989-19997. [12] NOVAIS R M, ASCENSÃO G, FERREIRA N, et al. Influence of water and aluminium powder content on the properties of waste-containing geopolymer foams[J]. Ceramics International, 2018, 44(6): 6242-6249. [13] HAJIMOHAMMADI A, NGO T, MENDIS P, et al. Regulating the chemical foaming reaction to control the porosity of geopolymer foams[J]. Materials & Design, 2017, 120: 255-265. [14] 王 爽, 陈艺通, 杨 奕, 等. 发泡水泥简论[J]. 生物化工, 2017, 3(3): 94-97. WANG S, CHEN Y T, YANG Y, et al. Brief discussion on foamed cement[J]. Biological Chemical Engineering, 2017, 3(3): 94-97 (in Chinese). [15] KOČÍ V, ČERNÝ R. Directly foamed geopolymers: a review of recent studies[J]. Cement and Concrete Composites, 2022, 130: 104530. [16] 陈 曦, 刘 莹, 鄢 文. 烧成温度对钙长石隔热耐火材料显微结构与性能的影响[J]. 硅酸盐通报, 2024, 43(3): 1123-1132. CHEN X, LIU Y, YAN W. Effect of sintering temperature on microstructure and properties of anorthite insulation refractory[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 1123-1132 (in Chinese). [17] 邹素琳, 曹 宇, 张海波, 等. 烧结温度与莫来石用量对氧化铝陶瓷性能的影响[J]. 佛山陶瓷, 2024, 34(9): 27-30. ZOU S L, CAO Y, ZHANG H B, et al. The influence of sintering temperature and amount of mullite on the properties of alumina ceramics[J]. Foshan Ceramics, 2024, 34(9): 27-30 (in Chinese). [18] HAJIMOHAMMADI A, NGO T, MENDIS P, et al. Pore characteristics in one-part mix geopolymers foamed by H2O2: the impact of mix design[J]. Materials & Design, 2017, 130: 381-391. [19] JAYA N A, YUN-MING L, CHENG-YONG H, et al. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer[J]. Construction and Building Materials, 2020, 247: 118641. [20] SARAZIN J, DAVY C A, BOURBIGOT S, et al. Flame resistance of geopolymer foam coatings for the fire protection of steel[J]. Composites Part B: Engineering, 2021, 222: 109045. [21] PENG X, SHUAI Q, LI H, et al. Fabrication and fireproofing performance of the coal fly ash-metakaolin-based geopolymer foams[J]. Materials, 2020, 13(7): 1750. [22] PENG X, LI H, SHUAI Q, et al. Fire resistance of alkali activated geopolymer foams produced from metakaolin and Na2O2[J]. Materials, 2020, 13(3): 535. [23] 彭婷婷, 彭 晖, 杨世旭. 防水剂改善活性氧化镁泡沫混凝土耐水性研究[J/OL]. 交通科学与工程, 2024: 1-8 (2024-10-16) [2025-1-10]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CSJX20241012003&dbname=CJFD&dbcode=CJFQ. PENG T T, PENG H, YANG S X. Study on waterproofing agent to improve water resistance of activated magnesium oxide foam concrete[J/OL]. China Industrial Economics, 2024: 1-8 (2024-10-16) [2025-1-10]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CSJX20241012003& dbname=CJFD&dbcode=CJFQ (in Chinese). [24] WU J D, ZHANG Z R, ZHANG Y, et al. Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends[J]. Construction and Building Materials, 2018, 168: 771-779. [25] CUI Y, WANG D M, ZHAO J H, et al. Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material[J]. Journal of Building Engineering, 2018, 20: 21-29. [26] 宋天诣, 曲星宇, 潘 竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 246-254. SONG T Y, QU X Y, PAN Z. Research progress on high temperature performance of geopolymers[J]. Materials Reports, 2023, 37(8): 246-254 (in Chinese). [27] 李晓明, 张 红, 智丽飞. 碱金属K对无烟煤灰熔融性的影响规律[J]. 热科学与技术, 2019, 18(6): 483-489. LI X M, ZHANG H, ZHI L F. Effect of alkali metal K on the fusibility of anthracite ash[J]. Journal of Thermal Science and Technology, 2019, 18(6): 483-489 (in Chinese). [28] 秦 娟, 崔 崇, 崔晓昱, 等. 钙长石晶体的形成机制研究[J]. 人工晶体学报, 2016, 45(5): 1153-1157. QIN J, CUI C, CUI X Y, et al. Study on formation mechanism of anorthite crystal[J]. Journal of Synthetic Crystals, 2016, 45(5): 1153-1157 (in Chinese). [29] NG Y S, ALEXANDER S M. Structural studies of manganese stabilised lead-zirconate-titanate[J]. Ferroelectrics, 1983, 51(1): 81-86. [30] SORNLAR W, WANNAGON A, SUPOTHINA S. Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymers[J]. Journal of Building Engineering, 2021, 44: 103273. [31] YATSENKO E A, GOLTSMAN B M, IZVARIN A I, et al. Influence of foaming additives on the porous structure and properties of lightweight geopolymers based on ash-slag waste[J]. Construction and Building Materials, 2024, 443: 137629. [32] WANG K T, KOU Y G, LIU Y, et al. Facile construction of superhydrophobic porous red mud/slag-based geopolymer for thermal insulation and oil/water separation[J]. Composites Part B: Engineering, 2025, 291: 112050. |