[1] YANG D Q, YAN C W, LIU S G, et al. Stress-strain constitutive model of concrete corroded by saline soil under uniaxial compression[J]. Construction and Building Materials, 2019, 213: 665-674. [2] WANG B X, PAN J J, FANG R C, et al. Damage model of concrete subjected to coupling chemical attacks and freeze-thaw cycles in saline soil area[J]. Construction and Building Materials, 2020, 242: 118205. [3] PASUPATHY K, SINGH CHEEMA D, SANJAYAN J. Durability performance of fly ash-based geopolymer concrete buried in saline environment for 10 years[J]. Construction and Building Materials, 2021, 281: 122596. [4] ZHANG R L, MA L N, LIU P, et al. Influence mechanisms under different immersion methods and different strengths of concrete in corrosive environments, and verification via long-term field test[J]. Structural Concrete, 2020, 21(5): 1853-1864. [5] 汪振双. 架构混凝土基础理论研究[D]. 大连: 大连理工大学, 2012. WANG Z S. Study on basic theory of frame concrete[D]. Dalian: Dalian University of Technology, 2012 (in Chinese). [6] MEHTA P K,MONTEIRO P J M. Concrete: microstructure, properties, and materials[M]. New York: McGraw-Hill Professional, 2014. [7] 楚英杰, 王爱国, 孙道胜, 等. 骨料特性影响混凝土体积稳定性的研究进展[J]. 材料导报, 2022, 36(5): 112-121. CHU Y J, WANG A G, SUN D S, et al. Research progress on the influence of aggregate characteristics on the volume stability of concrete[J]. Materials Reports, 2022, 36(5): 112-121 (in Chinese). [8] BEUSHAUSEN H, DITTMER T. The influence of aggregate type on the strength and elastic modulus of high strength concrete[J]. Construction and Building Materials, 2015, 74: 132-139. [9] LIU H Q, BAI G L, GU Y, et al. The influence of coal gangue coarse aggregate on the mechanical properties of concrete columns[J]. Case Studies in Construction Materials, 2022, 17: e01315. [10] OLAWUYI O A, KAREEM M, ISHOLA K, et al. Mechanical properties of concrete incorporating waste glass as replacement for fine and coarse aggregate[J]. International Journal of Engineering Research in Africa, 2022, 59: 19-28. [11] ZHOU X, XIE Y J, LONG G C, et al. Effect of surface characteristics of aggregates on the compressive damage of high-strength concrete based on 3D discrete element method[J]. Construction and Building Materials, 2021, 301: 124101. [12] 王云枫. 粗骨料与水泥砂浆协同作用影响混凝土性能试验研究[D]. 大连: 大连交通大学, 2020. WANG Y F. The synergistic effect of coarse aggregate and cement mortar on concrete performance was studied[D]. Dalian: Dalian Jiaotong University, 2020 (in Chinese). [13] 卢京宇. 不同岩性粗骨料对大流态混凝土性能的影响及机理分析[D]. 北京: 北京建筑大学, 2021. LU J Y. Influence and mechanism analysis of different lithological coarse aggregate on performance of high-fluidity concrete[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021 (in Chinese). [14] 许鸽龙. 骨料嵌锁型混凝土特性及其形成机理研究[D]. 武汉: 武汉理工大学, 2020. XU G L. Properties of aggregate interlocking concrete and its formation mechanism[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese). [15] XU L H, WU F H, CHI Y, et al. Effects of coarse aggregate and steel fibre contents on mechanical properties of high performance concrete[J]. Construction and Building Materials, 2019, 206: 97-110. [16] 赵 明, 张 雄, 张晓乐, 等. 颗粒整形后粗骨料特征及其对混凝土性能的影响[J]. 同济大学学报(自然科学版), 2016, 44(3): 395-401. ZHAO M, ZHANG X, ZHANG X L, et al. Research on the characteristic of coarse aggregate after particle shaping and the influence on the concrete performance[J]. Journal of Tongji University (Natural Science), 2016, 44(3): 395-401 (in Chinese). [17] 王东来. 后掺骨料混凝土力学性能和抗冻性能试验研究[D]. 大连: 大连理工大学, 2017. WANG D L. Experimental study on mechanical properties and frost resistance of high performance pumping concrete with after-mixing coarse aggregate[D]. Dalian: Dalian University of Technology, 2017 (in Chinese). [18] 张文静, 李 波, 张戎令, 等. 基于NMR技术的自然腐蚀环境下混凝土强度劣化分析[J]. 混凝土与水泥制品, 2023(12): 17-22. ZHANG W J, LI B, ZHANG R L, et al. Analysis of concrete strength deterioration in freeze-thaw corrosion environment based on NMR technology[J]. China Concrete and Cement Products, 2023(12): 17-22 (in Chinese). [19] 肖鹏震, 张戎令, 胡锐鹏, 等. 混凝土抗硫酸盐侵蚀性能及其离子扩散影响因素研究[J]. 中国材料进展, 2021, 40(5): 359-365. XIAO P Z, ZHANG R L, HU R P, et al. Study on the sulfate resistance of concrete and the influencing factors of ion diffusion[J]. Materials China, 2021, 40(5): 359-365 (in Chinese). [20] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999. WU Z W, LIAN H Z. High performance concrete[M]. Beijing: China Railway Publishing House, 1999 (in Chinese). [21] 蒋 科, 郭 辉, 李 洋, 等. 氯盐环境下混凝土冻融循环及孔结构演化研究[J]. 人民长江, 2021, 52(12): 162-167. JIANG K, GUO H, LI Y, et al. Research on concrete damage and pore structure evolution under freeze-thaw cycles in chloride solution[J]. Yangtze River, 2021, 52(12): 162-167 (in Chinese). [22] 张雪勤, 徐 锋. 基于灰色系统理论的矿渣混凝土氯离子扩散性能与孔结构研究[J]. 科技创新导报, 2020, 17(20): 61-64. ZHANG X Q, XU F. Study on chloride diffusion performance and pore structure of slag concrete based on grey system theory[J]. Science and Technology Innovation Herald, 2020, 17(20): 61-64 (in Chinese). [23] 田 威, 李小山, 王 峰. 冻融循环与硫酸盐溶液耦合作用下混凝土劣化机理试验研究[J]. 硅酸盐通报, 2019, 38(3): 702-710. TIAN W, LI X S, WANG F. Experimental study on deterioration mechanism of concrete under freeze-thaw cycles coupled with sulfate solution[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 702-710 (in Chinese). [24] 张瑞稳, 王起才, 张戎令, 等. -3 ℃养护下引气混凝土孔结构与抗渗性研究[J]. 铁道科学与工程学报, 2018, 15(5): 1147-1154. ZHANG R W, WANG Q C, ZHANG R L, et al. Research of air-entraining concrete for pore structure characteristics and permeability under -3 ℃ curing condition[J]. Journal of Railway Science and Engineering, 2018, 15(5): 1147-1154 (in Chinese). [25] ZHANG B, LI Q B, MA R, et al. An experimental investigation on the impermeability and durability of concrete with a novel and multifunctional hydrophobic admixture addition[J]. Structural Concrete, 2022, 23(2): 836-848. [26] 李鹤斌. 基于核磁共振的负温混凝土早期水化及含冰率研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. LI H B. Study on early hydration and ice content of negative temperature concrete based on nuclear magnetic resonance technology[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). |