[1] YANG H F, LAN W W, QIN Y H, et al. Evaluation of bond performance between deformed bars and recycled aggregate concrete after high temperatures exposure[J]. Construction and Building Materials, 2016, 112: 885-891. [2] DIEDERICHS U, SCHNEIDER U. Bond strength at high temperatures[J]. Magazine of Concrete Research, 1981, 33(115): 75-84. [3] BINGÖL A F, GÜL R. Residual bond strength between steel bars and concrete after elevated temperatures[J]. Fire Safety Journal, 2009, 44(6): 854-859. [4] LEE B Y, KURTIS K E. Influence of TiO2 nanoparticles on early C3S hydration[J]. Journal of the American Ceramic Society, 2010, 93(10): 3399-3405. [5] 孟 涛, 钱晓倩, 詹树林, 等. 纳米TiO2对水泥砂浆力学性能和微观结构的影响研究[C]. 超高层混凝土泵送与超高性能混凝土技术的研究与应用国际研讨会论文集, 2008. MENG T, QIAN X Q, ZHAN S L, et al. Effect of nano-TiO2 on mechanical properties and microstructure of cement mortar[C]. International symposium on research and application of super high-rise concrete pumping and ultra-high performance concrete technology, 2008 (in Chinese). [6] LAWRENCE P, CYR M, RINGOT E. Mineral admixtures in mortars effect of inert materials on short-term hydration[J]. Cement and Concrete Research, 2003, 33(12): 1939-1947. [7] NAZARI A, RIAHI S. Retraction note: TiO2 nanoparticles effects on properties of concrete using ground granulated blast furnace slag as binder[J]. Science China Technological Sciences, 2021, 64(9): 2066. [8] JALAL M, FATHI M, FARZAD M. Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self compacting concrete[J]. Mechanics of Materials, 2013, 61: 11-27. [9] MA B G, LI H N, MEI J P, et al. Effects of nano-TiO2 on the toughness and durability of cement-based material[J]. Advances in Materials Science and Engineering, 2015, 2015: 583106. [10] SALMAN M M, EWEED K M, HAMEED A M. Influence of partial replacement TiO2 nanoparticles on the compressive and flexural strength of ordinary cement mortar[J]. Al-Nahrain Journal for Engineering Sciences, 2016, 19(2): 265-270. [11] 祁术洪, 曹立梅, 李 正. 钢纤维纳米混凝土与钢筋粘结性能试验研究[J]. 建筑技术, 2019, 50(1): 91-94. QI S H, CAO L M, LI Z. Experimental study on bond behavior of steel fiber reinforced nano concrete and steel bar[J]. Architecture Technology, 2019, 50(1): 91-94 (in Chinese). [12] 申春梅, 崔艳艳. 钢渣-复掺纳米SiO2混凝土与钢筋粘结锚固性能试验研究[J]. 新型建筑材料, 2017, 44(2): 111-113. SHEN C M, CUI Y Y. Test research on the bond anchorage performance of nano SiO2 steel slag-mixed concrete with steel[J]. New Building Materials, 2017, 44(2): 111-113 (in Chinese). [13] ISMAEL R, SILVA J V, CARMO R N F, et al. Influence of nano-SiO2 and nano-Al2O3 additions on steel-to-concrete bonding[J]. Construction and Building Materials, 2016, 125: 1080-1092. [14] GUO Z, ZHU Q X, WU W D, et al. Research on bond-slip performance between pultruded glass fiber-reinforced polymer tube and nano-CaCO3 concrete[J]. Nanotechnology Reviews, 2020, 9(1): 637-649. [15] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specifications for mix design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Construction Industry Press, 2011 (in Chinese). [16] 王 磊. 玄武岩纤维混凝土高温后力学性能及损伤演化试验研究[D]. 呼和浩特: 内蒙古工业大学, 2017. WANG L. Experimental study on mechanical properties and damage evolution of basalt fiber concrete after high temperature[D]. Hohhot: Inner Mongolia University of Tehchnology, 2017 (in Chinese). [17] 石 磊. 高温后钢筋与纳米TiO2混凝土粘结性能试验研究[D]. 呼和浩特: 内蒙古工业大学, 2022. SHI L. Experimental study on bonding properties of steel bar and nano-TIO2 concrete after high temperature [D]. Hohhot: Inner Mongolia University of Technology, 2022 (in Chinese). [18] 汪 菊. 钢筋与混凝土的黏结性能研究[J]. 河北企业, 2018(12): 185-186. WANG J. Research on bonding properties of steel bar and concrete[J]. Hebei Enterprise, 2018(12): 185-186 (in Chinese). [19] 余 琼, 袁炜航, 尤高帅. 带肋钢筋与灌浆料粘结性能试验研究及有限元分析[J]. 结构工程师, 2016, 32(6): 113-122. YU Q, YUAN W H, YOU G S. Experiment and finite element analysis on bonding properties between deformed bars and grouting material[J]. Structural Engineers, 2016, 32(6): 113-122 (in Chinese). [20] 代小兵, 陈 静, 黄煜镔. 纳米和纤维增强水泥基材料耐高温性能及机理研究进展[J]. 公路交通技术, 2023, 39(2): 52-59. DAI X B, CHEN J, HUANG Y B. Research progress on high-temperature resistance and mechanism of nano-fiber reinforced cement-based materials[J]. Technology of Highway and Transport, 2023, 39(2): 52-59 (in Chinese). [21] 苗生龙, 李庆涛, 赵园园, 等. 高温后掺纳米CaCO3混凝土劈裂抗拉性能研究[J]. 三峡大学学报(自然科学版), 2020, 42(3): 68-72. MIAO S L, LI Q T, ZHAO Y Y, et al. Study on splitting tensile properties of nano-doped CaCO3 concrete at high temperature[J]. Journal of China Three Gorges University (Natural Science Edition), 2020, 42(3): 68-72 (in Chinese). [22] HAN B G, LI Z, ZHANG L Q, et al. Reactive powder concrete reinforced with nano SiO2-coated TiO2[J]. Construction and Building Materials, 2017, 148: 104-112. [23] 黄灵芝, 赵鹏龙, 司 政, 等. 复掺纳米材料对混凝土力学性能的影响研究[J]. 应用力学学报, 2023, 40(4): 788-796. HUANG L Z, ZHAO P L, SI Z, et al. The influence of mixed nano admixtures on the mechanical properties of concrete[J]. Chinese Journal of Applied Mechanics, 2023, 40(4): 788-796 (in Chinese). [24] The International Federation for Structural Concrete. Model code 2010: first complete draft[S]. Switzerland: Secretariat Permanent, 2010. [25] 鲁成东. 高温喷水冷却后钢筋与再生混凝土黏结性能试验研究[D]. 青岛: 青岛理工大学, 2023. LU C D. Experimental study on bonding properties of rebar and recycled concrete after cooling with water spray at high temperature[D]. Qingdao: Qingdao University of Technology, 2023 (in Chinese). [26] 张 众. 高温后钢筋与钢纤维火山渣混凝土粘结性能试验研究[D]. 长春: 吉林建筑大学, 2022. ZHANG Z. Experimental study on the bonding properties of steel bar and steel fiber scoria concrete after high temperature[D]. Changchun: Jilin Jianzhu University, 2022 (in Chinese). [27] 陈建华. 高温后钢筋与聚合物水泥砂浆粘结性能试验研究[D]. 广州: 广东工业大学, 2020. CHEN J H. Experimental study on bonding properties of steel bar and polymer cement mortar after high temperature[D]. Guangzhou: Guangdong University of Technology, 2020 (in Chinese). [28] KOOK K H, SHIN H O, KWAHK I J, et al. Bond characteristics of ultra high performance concrete[J]. Journal of the Korea Concrete Institute, 2010, 22(6): 753-760. [29] LIANG R, HUANG Y, XU Z M. Experimental and analytical investigation of bond behavior of deformed steel bar and ultra-high performance concrete[J]. Buildings, 2022, 12(4): 460. [30] MARCHAND P, BABY F, KHADOUR A, et al. Bond behaviour of reinforcing bars in UHPFRC[J]. Materials and Structures, 2016, 49(5): 1979-1995. |