[1] ZHOU G T, WANG Y L, QI T G, et al. Toward sustainable green alumina production: a critical review on process discharge reduction from gibbsitic bauxite and large-scale applications of red mud[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109433. [2] WANG J, LIU X M, ZHANG Z Q, et al. Synergistic utilization, critical mechanisms, and environmental suitability of bauxite residue (red mud) based multi-solid wastes cementitious materials and special concrete[J]. Journal of Environmental Management, 2024, 361: 121255. [3] LIU X, HAN Y X, HE F Y, et al. Characteristic, hazard and iron recovery technology of red mud: a critical review[J]. Journal of Hazardous Materials, 2021, 420: 126542. [4] FANG W, ZHOU Y, CHENG M Q, et al. A review on modified red mud-based materials in removing organic dyes from wastewater: application, mechanisms and perspectives[J]. Journal of Molecular Liquids, 2024, 407: 125171. [5] PAN X L, WU H F, LV Z Y, et al. Recovery of valuable metals from red mud: a comprehensive review[J]. Science of The Total Environment, 2023, 904: 166686. [6] JONES B E H, HAYNES R J. Bauxite processing residue: a critical review of its formation, properties, storage, and revegetation[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(3): 271-315. [7] 夏 帆, 崔诗才, 蒲锡鹏. 赤泥综合利用现状综述[J]. 中国资源综合利用, 2021, 39(4): 85-89+105. XIA F, CUI S C, PU X P. Summary of the status quo of comprehensive utilization of red mud[J]. China Resources Comprehensive Utilization, 2021, 39(4): 85-89+105 (in Chinese). [8] BRAY A W, STEWART D I, COURTNEY R, et al. Sustained bauxite residue rehabilitation with gypsum and organic matter 16 years after initial treatment[J]. Environmental Science & Technology, 2018, 52(1): 152-161. [9] 廖建雄, 汤 茜, 周龙武, 等. 木质纤维素废渣对赤泥的脱碱及改良研究[J]. 环境科学与技术, 2019, 42(1): 31-36. LIAO J X, TANG Q, ZHOU L W, et al. Studies of lignocellulose waste residue on dealkalization and amendment of red mud[J]. Environmental Science & Technology, 2019, 42(1): 31-36 (in Chinese). [10] 黄诗蔚, 张子颖, 钟小琳, 等. 酸浸米糠协同脱硫石膏驱动赤泥成土[J]. 中国有色金属学报, 2024, 34(5): 1712-1726. HUANG S W, ZHANG Z Y, ZHONG X L, et al. Synergistic effects of acid-treated rice bran and desulfurization gypsum on soil formation of bauxite residue[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(5): 1712-1726 (in Chinese). [11] ZHU F, XUE S G, HARTLEY W, et al. Novel predictors of soil genesis following natural weathering processes of bauxite residues[J]. Environmental Science and Pollution Research, 2016, 23(3): 2856-2863. [12] 薛生国, 秦信凤, 刘 星, 等. 草酸青霉协同脱硫石膏对赤泥中团聚体分布及其稳定性的影响[J]. 中国有色金属学报, 2023, 33(11): 3900-3913. XUE S G, QIN X F, LIU X, et al. Synergistic effects of Penicilliumoxalicum and desulfurized gypsum on aggregate distribution and its stability in bauxite residue[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(11): 3900-3913 (in Chinese). [13] KONG X F, LI M, XUE S G, et al. Acid transformation of bauxite residue: conversion of its alkaline characteristics[J]. Journal of Hazardous Materials, 2017, 324: 382-390. [14] ZHANG X Z, LIU Z C, WANG F Z, et al. Staged characteristics of red mud dealkalization by CO2 and SO2[J]. Journal of Cleaner Production, 2023, 411: 137253. [15] GUO Y, ZHANG X C, QIN X F, et al. Organic amendments enhanced the humification degree in soil formation of bauxite residue[J]. Plant and Soil, 2024, 497(1): 61-77. [16] XUE S G, HUANG N, FAN J R, et al. Evaluation of aggregate formation, stability and pore characteristics of bauxite residue following polymer materials addition[J]. Science of The Total Environment, 2021, 765: 142750. [17] JIANG Y F, QIN X F, ZHU F, et al. Halving gypsum dose by Penicillium oxalicum on alkaline neutralization and microbial community reconstruction in bauxite residue[J]. Chemical Engineering Journal, 2023, 451: 139008. [18] 曾 华, 吕 斐, 胡广艳, 等. 拜耳法赤泥脱碱新工艺及其土壤化研究[J]. 矿产保护与利用, 2019, 39(3): 1-7. ZENG H, LYU F, HU G Y, et al. Study on new process of removing alkali from red mud by bayer process and its soil formation[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 1-7 (in Chinese). [19] KE W S, ZHANG X C, ZHU F, et al. Appropriate human intervention stimulates the development of microbial communities and soil formation at a long-term weathered bauxite residue disposal area[J]. Journal of Hazardous Materials, 2021, 405: 124689. [20] BERNHARD WEHR J, FULTON I, MENZIES N W. Revegetation strategies for bauxite refinery residue: a case study of Alcan Gove in Northern Territory, Australia[J]. Environmental Management, 2006, 37(3): 297-306. [21] XUE S G, WU Y J, LI Y W, et al. Industrial wastes applications for alkalinity regulation in bauxite residue: a comprehensive review[J]. Journal of Central South University, 2019, 26(2): 268-288. [22] ZHAO J H, TONG L Y, LI B E, et al. Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment[J]. Journal of Cleaner Production, 2021, 307: 127085. [23] GE Y Y, YUAN Y, WANG K T, et al. Preparation of geopolymer-based inorganic membrane for removing Ni2+ from wastewater[J]. Journal of Hazardous Materials, 2015, 299: 711-718. [24] REGELINK I C, STOOF C R, ROUSSEVA S, et al. Linkages between aggregate formation, porosity and soil chemical properties[J]. Geoderma, 2015, 247: 24-37. [25] 魏朝富, 谢德体, 李保国. 土壤有机无机复合体的研究进展[J]. 地球科学进展, 2003, 18(2): 221-227. WEI C F, XIE D T, LI B G. Progress in resaerch on soil organo-mineral complexes[J]. Advance in Earth Sciences, 2003, 18(2): 221-227 (in Chinese). [26] KVÁRA F, KOPECKÝ L, MILAUER V, et al. Material and structural characterization of alkali activated low-calcium brown coal fly ash[J]. Journal of Hazardous Materials, 2009, 168(2/3): 711-720. [27] XUE S G, ZHU F, KONG X F, et al. A review of the characterization and revegetation of bauxite residues (red mud)[J]. Environmental Science and Pollution Research, 2016, 23(2): 1120-1132. [28] 吕贻忠, 李保国. 土壤学[M]. 北京: 中国农业出版社, 2006. LYU Y Z, LI B G. Soil science[M]. Beijing: China Agriculture Press, 2006 (in Chinese). [29] JONES B E H, HAYNES R J, PHILLIPS I R. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand[J]. Environmental Science and Pollution Research International, 2011, 18(2): 199-211. [30] NGO A T, MORI Y, BUI L T. Effects of cellulose nanofibers on soil water retention and aggregate stability[J]. Environmental Technology & Innovation, 2024, 35: 103650. [31] WENG L P, VAN RIEMSDIJK W H, HIEMSTRA T. Humic nanoparticles at the oxide-water interface: interactions with phosphate ion adsorption[J]. Environmental Science & Technology, 2008, 42(23): 8747-8752. [32] LI Y, LIU X M, WANG S J, et al. A study on the pedo-transfer functions and influencing factors for prediction of soil bulk density for limestone soil in karst area of south China[J]. Journal of Earth Environment, 2018. [33] 刘亚龙, 王 萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望[J]. 土壤学报, 2023, 60(3): 627-643. LIU Y L, WANG P, WANG J K. Formation and stability mechanism of soil aggregates: progress and prospect[J]. Acta Pedologica Sinica, 2023, 60(3): 627-643 (in Chinese). |