BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (5): 1878-1887.DOI: 10.16552/j.cnki.issn1001-1625.2024.1137
• Ceramics and Refractory Materials • Previous Articles Next Articles
QIAO Changtong, YU Chao, DENG Chengji, WANG Xuan, DING Jun, LIU Zhenglong, ZHU Hongxi
Received:2024-09-25
Revised:2025-01-13
Published:2025-05-20
CLC Number:
QIAO Changtong, YU Chao, DENG Chengji, WANG Xuan, DING Jun, LIU Zhenglong, ZHU Hongxi. Effect of Aluminum Dross on Microstructure and Properties of Low Carbon Al2O3-C Refractory Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1878-1887.
| [1] 刘 颖, 张俊杰, 沈汉林, 等. 二次铝灰资源化研究进展[J]. 稀有金属, 2024, 48(02): 277-287. LIU Y, ZHANG J J, SHEN H L, et al. Research progress of secondary aluminum dross resource utilization[J]. Rare Metals, 2024, 48(02): 277-287 (in Chinese). [2] 张晓霞, 段 毅, 苏 俊. 铝灰的研究现状及进展分析[J]. 云南冶金, 2023, 52(3): 63-67. ZHANG X X, DUAN Y, SU J. Research status and progress analysis on aluminum ash[J]. Yunnan Metallurgy, 2023, 52(3): 63-67 (in Chinese). [3] 杨颜啸, 苏美兰, 陈武华. 铝灰的综合处理及资源化利用[J]. 广东化工, 2023, 50(8): 75-77+30. YANG Y X, SU M L, CHEN W H. Comprehensive treatment and resource utilization of aluminum dross[J]. Guangdong Chemical Industry, 2023, 50(8): 75-77+30 (in Chinese). [4] 董良民, 焦 芬, 刘 维, 等. 铝灰回收处理研究进展[J]. 中南大学学报(自然科学版), 2022, 53(10): 3791-3801. DONG L M, JIAO F, LIU W, et al. Research progress of aluminum ash recovery and treatment[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 3791-3801 (in Chinese). [5] 李 波, 张树朝, 瞿媛媛. 铝灰检测技术研究进展[J]. 中国材料进展, 2023, 42(10): 833-839. LI B, ZHANG S C, QU Y Y. Research progress of the test technology of aluminum dross[J]. Materials China, 2023, 42(10): 833-839 (in Chinese). [6] 李亮星, 董学舒, 程 一, 等. 二次铝灰无害化处理和资源化利用研究进展[J]. 轻金属, 2024(4): 5-12. LI L X, DONG X S, CHENG Y, et al. Research progress on harmless treatment and resource utilization of secondary aluminum dross[J]. Light Metals, 2024(4): 5-12 (in Chinese). [7] 张 宁, 蒋世杰, 刘雅萍, 等. 铝灰铝渣综合循环再利用分析[J]. 现代工业经济和信息化, 2022, 12(12): 71-72. ZHANG N, JIANG S J, LIU Y P, et al. Analysis of aluminum ash and aluminum slag comprehensive recycling and reuse[J]. Modern Industrial Economy and Informationization, 2022, 12(12): 71-72 (in Chinese). [8] 俞新宇, 彭 军, 张 芳, 等. 铝灰资源综合利用[J]. 中国铸造装备与技术, 2022, 57(1): 21-30. YU X Y, PENG J, ZHANG F, et al. Comprehensive utilization of ash resources[J]. China Foundry Machinery & Technology, 2022, 57(1): 21-30 (in Chinese). [9] 蒋太波. 铝灰综合利用技术及应用研究[J]. 有色金属加工, 2024, 53(2): 65-70. JIANG T B. Research on comprehensive utilization technology and application of aluminum dross[J]. Nonferrous Metals Processing, 2024, 53(2): 65-70 (in Chinese). [10] 张 林, 刘向东. 一种铝灰的无害化处理工艺[J]. 辽宁化工, 2023, 52(8): 1149-1152. ZHANG L, LIU X D. A harmless treatment process of aluminum ash[J]. Liaoning Chemical Industry, 2023, 52(8): 1149-1152 (in Chinese). [11] MAHINROOSTA M, ALLAHVERDI A. Hazardous aluminum dross characterization and recycling strategies: a critical review[J]. Journal of Environmental Management, 2018, 223: 452-468. [12] MA Z Y, MA H R, BA M F, et al. Pozzolanic activity of secondary aluminum ash sintered and ground fine powder in Portland cement[J]. Construction and Building Materials, 2024, 438: 137120. [13] MURAYAMA N, MAEKAWA I, USHIRO H, et al. Synthesis of various layered double hydroxides using aluminum dross generated in aluminum recycling process[J]. International Journal of Mineral Processing, 2012, 110: 46-52. [14] ZHANG J J, LIU B, SHEN H L, et al. Theoretical and experimental on the thermodynamic, kinetic and phase evolution characteristics of secondary aluminum ash[J]. Journal of Materials Research and Technology, 2022, 19: 3857-3866. [15] 吴 珍, 张晓玉, 陈中楠, 等. 二次铝灰危险废物的资源化利用技术研究进展[J]. 再生资源与循环经济, 2022, 15(12): 39-41. WU Z, ZHANG X Y, CHEN Z N, et al. Advances in reutilization technologies of hazardous secondary aluminum dross[J]. Recyclable Resources and Circular Economy, 2022, 15(12): 39-41 (in Chinese). [16] 李泽坤, 李风亭. 二次铝灰资源化利用研究进展[J]. 净水技术, 2023, 42(8): 38-47. LI Z K, LI F T. Research progress of resource utilization for secondary aluminum slag[J]. Water Purification Technology, 2023, 42(8): 38-47 (in Chinese). [17] ZHANG J J, SIMÕES M F, DENG J X, et al. Isothermal foaming-nucleation-crystallization of glass ceramic foams with hierarchical pore structure: a sustainable approach for disposal of secondary aluminum ash[J]. Journal of Materials Research and Technology, 2023, 26: 5638-5650. [18] REN Y C, WANG Z L, QU G F, et al. Comprehensive performance study of aluminum ash and calcium carbide slag for brick making under ultra-high pressure[J]. Construction and Building Materials, 2022, 359: 129526. [19] WU F H, HE M J, QU G F, et al. Synergistic densification treatment technology of phosphogypsum and aluminum ash[J]. Process Safety and Environmental Protection, 2023, 173: 847-858. [20] 魏国平, 朱伯铨, 李享成. 铝渣的烧结性能研究[J]. 耐火材料, 2012, 46(3): 209-211. WEI G P, ZHU B Q, LI X C. Sintering properties of alumina-containing slag[J]. Refractories, 2012, 46(3): 209-211 (in Chinese). [21] 齐 涛, 刘 璇, 满苏醇, 等. 二次铝灰基多孔莫来石陶瓷制备研究[J]. 非金属矿, 2024, 47(3): 18-21. QI T, LIU X, MAN S C, et al. Study on the preparation of secondary aluminium ash based porous mullite ceramics[J]. Non-Metallic Mines, 2024, 47(3): 18-21 (in Chinese). [22] 张 勇, 宗晨宇, 王钰婷, 等. 二氧化硅对二次铝灰烧结制备镁铝尖晶石材料性能的影响[J]. 中国有色冶金, 2023, 52(3): 57-65. ZHANG Y, ZONG C Y, WANG Y T, et al. Effect of silicon dioxide on properties of magnesium-aluminum-spinel sintered from secondary alumina dross[J]. China Nonferrous Metallurgy, 2023, 52(3): 57-65 (in Chinese). [23] 陈 辛, 曾祥会, 方 伟, 等. 二次铝灰制备高强度陶粒及其性能研究[J]. 硅酸盐通报, 2023, 42(2): 618-625. CHEN X, ZENG X H, FANG W, et al. Preparation and properties of high strength ceramsite from secondary aluminum ash[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 618-625 (in Chinese). [24] 张笑妍, 张深根, 李雯昊. 一种铝灰渣高温自发泡制备低收缩多孔陶瓷的方法: 中国, CN202111130035.3[P]. 2022-07-29. ZHANG X Y, ZHANG S G, LI W H. A method of preparing low-shrinkage porous ceramics by high-temperature self-foaming of aluminium ash slag. China: CN202111130035.3[P]. 2022-07-29 (in Chinese). [25] RAMASWAMY P, TILLETI P, BHATTACHARJEE S, et al. Synthesis of value added refractories from aluminium dross and zirconia composites[J]. Materials Today: Proceedings, 2020, 22: 1264-1273. [26] 汪 涛. 铝灰回收生产高活性氧化铝和水处理聚合氯化铝的研究[D]. 安徽: 安徽大学, 2023: 22-29. WANG T. Productions of activated alumina oxide and the polymeric aluminum chloride for the water purification from the recycling of aluminum ash[D]. Anhui: Anhui University, 2023: 22-29 (in Chinese). [27] 李 帅, 康泽双, 闫 琨, 等. 预处理铝灰制备镁铝尖晶石研究[J]. 有色金属(冶炼部分), 2020(9): 75-79. LI S, KANG Z S, YAN K, et al. Study on synthesis of MgAl2O4 from pre-treated aluminum dross[J]. Nonferrous Metals (Extractive Metallurgy), 2020(9): 75-79 (in Chinese). [28] SHI M, LI Y, SHI J J. Fabrication of periclase and magnesium aluminate spinel refractory from washed residue of secondary aluminum dross[J]. Ceramics International, 2022, 48(6): 7668-7676. [29] FOO C T, SALLEH M A M, YING K K, et al. Mineralogy and thermal expansion study of mullite-based ceramics synthesized from coal fly ash and aluminum dross industrial wastes[J]. Ceramics International, 2019, 45(6): 7488-7494. [30] GHASEMI-KAHRIZSANGI S, GHEISARI DEHSHEIKH H, BOROUJERDNIA M. Effect of micro and nano-Al2O3 addition on the microstructure and properties of MgO-C refractory ceramic composite[J]. Materials Chemistry and Physics, 2017, 189: 230-236. [31] 杨新萍. X射线衍射技术的发展和应用[J]. 山西师范大学学报(自然科学版), 2007, 21(1): 72-76. YANG X P. The development and application of X-ray diffraction[J]. Journal of Shanxi Normal University (Natural Science Edition), 2007, 21(1): 72-76 (in Chinese). [32] LUO M, LI Y W, JIN S L, et al. Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes[J]. Materials Science and Engineering: A, 2012, 548: 134-141. [33] 程 峰, 王军凯, 谭 操, 等. 以Fe2O3为催化剂制备氧化镁晶须[J]. 硅酸盐学报, 2017, 45(3): 459-466. CHENG F, WANG J K, TAN C, et al. Preparation of MgO whiskers using ferric oxide as catalyst[J]. Journal of the Chinese Ceramic Society, 2017, 45(3): 459-466 (in Chinese). [34] BEHERA S K, MISHRA B. Strengthening of Al2O3-C slide gate plate refractories with expanded graphite[J]. Ceramics International, 2015, 41(3): 4254-4259. [35] 刘正龙. SiC包覆石墨对铝碳材料结构及性能影响机制[D]. 武汉: 武汉科技大学, 2023: 72-78. LIU Z L. Influence mechanism of SiC coated graphite on structure and properties of alumina-carbon refractories[D]. Wuhan: Wuhan University of Science and Technology, 2023: 72-78 (in Chinese). [36] 王东旭, 王 洋, 李文艳, 等. 碱性氧化物对煤灰熔融特性影响的研究进展[J]. 化工进展, 2017, 36(增刊1): 167-174. WANG D X, WANG Y, LI W Y, et al. Research progress on the effect of alkaline oxides on coal ash fusibility[J]. Chemical Industry and Engineering Progress, 2017, 36(supplement 1): 167-174 (in Chinese). [37] 戴爱军, 杜彦学, 谢欣馨. 煤灰成分与灰熔融性关系研究进展[J]. 煤化工, 2009, 37(4): 16-19. DAI A J, DU Y X, XIE X X. Research progress on the relationship between coal ash components and ash fusion character[J]. Coal Chemical Industry, 2009, 37(4): 16-19 (in Chinese). [38] 何 舜, 高晓磊, 李 爽, 等. 氧化铝陶瓷低温烧结助剂研究概述[J]. 陶瓷, 2020(8): 12-15. HE S, GAO X L, LI S, et al. Overview of research on alumina ceramic low temperature sintering auxiliaries[J]. Ceramics, 2020(8): 12-15 (in Chinese). [39] 祁 超, 肖海平, 王东旭, 等. Na2O质量分数对高碱煤灰烧结强度影响[J]. 热力发电, 2018, 47(1): 19-25+32. QI C, XIAO H P, WANG D X, et al. Effect of sodium oxide content on ash sintering strength of high alkali coal[J]. Thermal Power Generation, 2018, 47(1): 19-25+32 (in Chinese). [40] MERTKE A, ANEZIRIS C G. The influence of nanoparticles and functional metallic additions on the thermal shock resistance of carbon bonded alumina refractories[J]. Ceramics International, 2015, 41(1): 1541-1552. [41] 刘朝阳, 潘松阳, 董泽明, 等. 莫来石晶须的制备、生长机制及应用研究进展[J]. 耐火材料, 2023, 57(3): 270-276. LIU Z Y, PAN S Y, DONG Z M, et al. Progress in preparation, growth mechanism, and application of mullite whiskers[J]. Refractories, 2023, 57(3): 270-276 (in Chinese). [42] CHEN Y, DENG C J, YU C, et al. Molten-salt nitridation synthesis of cubic ZrN nanopowders at low temperature via magnesium thermal reduction[J]. Ceramics International, 2018, 44(7): 8710-8715. [43] 刘 俊, 李云霞, 林正杰, 等. 复合添加炭黑对低碳铝碳材料显微结构与性能的影响[J]. 武汉科技大学学报, 2015, 38(6): 413-418. LIU J, LI Y X, LIN Z J, et al. Effect of combined addition of carbon black on microstructure and properties of low carbon Al2O3-C refractories[J]. Journal of Wuhan University of Science and Technology, 2015, 38(6): 413-418 (in Chinese). [44] 高朋召, 王红洁, 金志浩. SiO2涂层制备工艺对三维碳纤维编织体抗氧化性能的影响[J]. 无机材料学报, 2003, 18(4): 849-854. GAO P Z, WANG H J, JIN Z H. Influence of SiO2 coating preparation process on the oxidation resistance of 3-D carbon fiber braids[J]. Journal of Inorganic Materials, 2003, 18(4): 849-854 (in Chinese). [45] 李新士, 党金海, 刘加善, 等. 单质硅加入量对铝碳材料力学性能和抗氧化性能的影响[J]. 耐火材料, 2006, 40(1): 77-78. LI X S, DANG J H, LIU J S, et al. Effect of silicon addition on mechanical properties and oxidation resistance of aluminum-carbon materials[J]. Refractories, 2006, 40(1): 77-78 (in Chinese). [46] YAN W, WU G Y, MA S B, et al. Energy efficient lightweight periclase-magnesium alumina spinel castables containing porous aggregates for the working lining of steel ladles[J]. Journal of the European Ceramic Society, 2018, 38(12): 4276-4282. [47] 鄢 文,李 楠. 孔径分布及组成对多孔尖晶石抗渣性能的影响[J]. 耐火材料, 2007, 41(增刊1): 192-197. YAN W, LI N. Effects of pore size distribution and composition on the slag resistance of porous spinel[J]. Refractories, 2007, 41(supplement 1): 192-197 (in Chinese). [48] WU M H, HUANG A, YANG S, et al. Corrosion mechanism of Al2O3-SiC-C refractory by SiO2-MgO-based slag[J]. Ceramics International, 2020, 46(18): 28262-28267. [49] 杨仪潇, 刘张敏, 邓湘云, 等. 氟化铝添加量对碳化硅/莫来石复合多孔陶瓷性能的影响[J]. 硅酸盐通报, 2015, 34(8): 2315-2319. YANG Y X, LIU Z M, DENG X Y, et al. Effect of aluminum fluoride addition on the properties of porous SiC/mullite composite ceramics[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(8): 2315-2319 (in Chinese). |
| [1] | WANG Ningning, HU Kangfei, BAO Yijun, ZHANG Wenwen, BU Jingwu, CHEN Xudong. Influences of Ground Granulated Blast Furnace Slag and Fly Ash Dosages on Performance of Controlled Low Strength Materials (CLSM) [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1726-1733. |
| [2] | MA Chunyu, MA Yuehui, WU Dingyuan, XU Lisheng, YUAN Xuegong, ZHU Zhen, LI Qiuyi, WANG Liang, WANG Meinan. Properties of Lightweight High-Toughness High Belite Cement Mortar Reinforced with Recycled Wood Fibers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1604-1611. |
| [3] | MA Shaolin, MING Yang, LI Wenjun, REN Hao, LIU Yongdao, TIAN Wei, ZHANG Guozhi, CHEN Feixiang, DOU Guangyuan, FAN Zhihong. Preparation and Performance of Ultrafine and High Active Mineral Admixture by Multiple Solid Wastes Synergy [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1824-1833. |
| [4] | WANG Jingyi, YANG Yifan, DUAN Guolin. Green Preparation and Performance Optimization of SiC Porous Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1869-1877. |
| [5] | REN Caifu, WANG Dongmin, FANG Kuizhen, WANG Jixiang, ZHANG Xinlong, CHEN Wei. Properties and Hardening Mechanism of Solid Waste Based Grouting Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1328-1336. |
| [6] | REN Jun, YU Yongkun, MAO Wenting, ZHANG Yu, WANG Dafu. Performance of Mortar Based on Phosphogypsum-Based Fine Lightweight Aggregate [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1420-1427. |
| [7] | WU Tingjie, WANG Chunyi, DU Xiangqin, YUAN Xuebing. Mechanical Properties and Microstructure of Rubber Cement Mortar under Static Loading [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1438-1447. |
| [8] | XIA Chenchen, XU Hao, ZHOU Ze, ZHAI Wenqiang, HE Zhihai. Properties and Carbon Emission Analysis of Self Leveling Mortar with Recycled Powder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1477-1485. |
| [9] | LI Zuzhong, MAO Haotian, WANG Liang, WU Zhikuan, WEN Shuo, LIU Weidong. Optimization of Standard Cement Mix Ratio for Concrete Early-Strength Repair Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 802-810. |
| [10] | ZHANG Peng, WU Jingjiang, ZHANG Chengshi, WEI Xiaoxue, DAI Xiaobing. Flexural Properties and Microstructure of Nano-SiO2 and Hybrid Fiber Reinforced Epoxy Resin Cement-Based Repair Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 834-841. |
| [11] | WANG Lijun, ZHU Pengcheng, PU Rumin, ZHOU Xiaohan, WANG Zhiqing. Effects of Mineral Admixtures on Sulfate Erosion Resistance of Cement Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 862-871. |
| [12] | WANG Hailiang, LI Xiangfei, QIAN Yiqun, ZHANG Yi, LI Yongtao. Effect of Anhydrite on Mechanical Properties and Hydration Process of Steam-Cured Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 892-904. |
| [13] | YANG Gang, GE Langchao, XIE Senhui, FENG Xiaojun, SONG Zilong, HE Jionghui, LI Gengying. Mechanical Properties and Mesoscopic Simulation of Silica Fume/Rubber Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 1032-1040. |
| [14] | LIU Dekun, SUN Qi. Strength Formation Mechanism of Alkali-Activation Steel Solid Waste Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 1057-1068. |
| [15] | BAI Liang, LI Yuanhang, WANG Xin, ZHENG Hui, LIANG Xingwen. Influence Mechanism of Compounding Calcium Aluminate Cement and Wollastonite on Corrosion Resistance of Magnesium Potassium Phosphate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 393-402. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||