[1] SHEN W G, DONG R, LI J S, et al. Experimental investigation on aggregate interlocking concrete prepared with scattering-filling coarse aggregate process[J]. Construction and Building Materials, 2010, 24(11): 2312-2316. [2] SHEN W G, ZHANG C, LI X L, et al. Low carbon concrete prepared with scattering-filling coarse aggregate process[J]. International Journal of Concrete Structures and Materials, 2014, 8(4): 309-313. [3] 沈卫国. 抛填集料工艺对混凝土力学性能的影响[J]. 建筑材料学报, 2007, 10(6): 711-716. SHEN W G. Effect of scattering-filling aggregate technology on the mechanical properties of concrete[J]. Journal of Building Materials, 2007, 10(6): 711-716 (in Chinese). [4] SHEN W G, ZHANG T, ZHOU M K, et al. Investigation on the scattering-filling coarse aggregate self-consolidating concrete[J]. Materials and Structures, 2010, 43(10): 1343-1350. [5] 许鸽龙. 骨料嵌锁型混凝土特性及其形成机理研究[D]. 武汉: 武汉理工大学, 2020. XU G L. Properties of aggregate interlocking concrete and its formation mechanism[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese). [6] 李将伟, 孙江涛, 姜 舰, 等. 抛填骨料路面混凝土的研究[J]. 武汉理工大学学报, 2018, 40(8): 34-39. LI J W, SUN J T, JIANG J, et al. Investigation on scattering-filling coarse aggregate pavement concrete[J]. Journal of Wuhan University of Technology, 2018, 40(8): 34-39 (in Chinese). [7] 朱子龙, 魏 磊, 史中玲, 等. 骨料嵌锁型垃圾焚烧灰渣路面基层的制备与性能研究[J]. 武汉理工大学学报, 2024, 46(8): 8-14. ZHU Z L, WEI L, SHI Z L, et al. Investigation on preparation of coarse aggregate interlocking municipal solid waste incineration bottom ash road base material and performance study[J]. Journal of Wuhan University of Technology, 2024, 46(8): 8-14 (in Chinese). [8] XU G L, SHEN W G, ZHANG B L, et al. Properties of recycled aggregate concrete prepared with scattering-filling coarse aggregate process[J]. Cement and Concrete Composites, 2018, 93: 19-29. [9] XU G L, SHEN W G, FANG D, et al. Influence of size and surface condition of distributing-filling coarse aggregate on the properties of aggregate-interlocking concrete[J]. Construction and Building Materials, 2020, 261: 120002. [10] KIM S M, ABU AL-RUB R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites[J]. Cement and Concrete Research, 2011, 41(3): 339-358. [11] 翁维素, 周 胜, 乔春蕾, 等. 骨料含量和试件尺寸对混凝土单轴受压细观性能影响[J]. 力学季刊, 2024, 45(3): 867-876. WENG W S, ZHOU S, QIAO C L, et al. Influence of aggregate content and specimen size on the meso performance of concrete under uniaxial compression[J]. Chinese Quarterly of Mechanics, 2024, 45(3): 867-876 (in Chinese). [12] 田梦云. 基于细观尺度的混凝土单轴力学性能的数值计算[D]. 太原: 太原理工大学, 2019. TIAN M Y. Meso-scale simulation analysis of uniaxial mechanical behavior of concrete[D]. Taiyuan: Taiyuan University of Technology, 2019 (in Chinese). [13] HUANG Y J, YAN D M, YANG Z J, et al. 2D and 3D homogenization and fracture analysis of concrete based on in situ X-ray Computed Tomography images and Monte Carlo simulations[J]. Engineering Fracture Mechanics, 2016, 163: 37-54. [14] WANG X F, YANG Z J, YATES J R, et al. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores[J]. Construction and Building Materials, 2015, 75: 35-45. [15] KUMAR R, BHATTACHARJEE B. Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33(1): 155-164. [16] 李明海, 许鸽龙, 张 正, 等. 抛填骨料工艺对混凝土抗压强度影响的机理分析[J]. 武汉理工大学学报, 2020, 42(11): 26-30. LI M H, XU G L, ZHANG Z, et al. Mechanism analysis of the effect of distributing-filling aggregate process on the compressive strength of concrete[J]. Journal of Wuhan University of Technology, 2020, 42(11): 26-30 (in Chinese). [17] CAI J W, DU Y, XU G L, et al. The combined effect of distributing-filling aggregate process and air-entraining agent on the properties of aggregate-interlocking concrete[J]. Materials and Structures, 2022, 55(7): 201. [18] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019 (in Chinese). [19] 中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T 70—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for basic performance test method of building mortar: JGJ/T 70—2009[S]. Beijing: China Architecture & Building Press, 2009 (in Chinese). [20] ZHANG Y H, CHEN Q Q, WANG Z Y, et al. 3D mesoscale fracture analysis of concrete under complex loading[J]. Engineering Fracture Mechanics, 2019, 220: 106646. [21] JIN L B, WANG Z H, WU T, et al. Mesoscale-based mechanical parameters determination and compressive properties of fully recycled coarse aggregate concrete[J]. Journal of Building Engineering, 2024, 90: 109366. [22] TANG L W, ZHOU W, LIU X H, et al. Three-dimensional mesoscopic simulation of the dynamic tensile fracture of concrete[J]. Engineering Fracture Mechanics, 2019, 211: 269-281. [23] 赵 育. 高导热性混凝土细观数值模拟与工程应用[D]. 西安: 长安大学, 2017. ZHAO Y. Mesosopic numerical simulation and engineering application of high thermal conductivity concrete[D]. Xi'an: Changan University, 2017 (in Chinese). [24] 朱洪波, 闫美珠, 李 晨, 等. 图像分析宏观孔孔隙率对混凝土抗压强度的影响[J]. 建筑材料学报, 2015, 18(2): 275-280. ZHU H B, YAN M Z, LI C, et al. Analysis of the influence of porosity of macroscopic pore on concrete strength by image method[J]. Journal of Building Materials, 2015, 18(2): 275-280 (in Chinese). [25] CUI J, HAO H, SHI Y C. Study of concrete damage mechanism under hydrostatic pressure by numerical simulations[J]. Construction and Building Materials, 2018, 160: 440-449. [26] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326. [27] 中华人民共和国住房和城乡建设部. 混凝土结构设计标准(2024年版): GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2024. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of concrete structures (2024 edition): GB/T 50010—2010[S]. Beijing: China Architecture & Building Press, 2024 (in Chinese). [28] XIAO J Z, LI W G, CORR D J, et al. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete[J]. Cement and Concrete Research, 2013, 52: 82-99. [29] MALEKI M, RASOOLAN I, KHAJEHDEZFULY A, et al. On the effect of ITZ thickness in meso-scale models of concrete[J]. Construction and Building Materials, 2020, 258: 119639. [30] JIN L, LI J, YU W X, et al. Mesoscopic simulations on the strength and size effect of concrete under biaxial loading[J]. Engineering Fracture Mechanics, 2021, 253: 107870. [31] 何 康. 基于细观力学的混凝土材料损伤破坏过程的数值仿真分析[D]. 兰州: 兰州交通大学, 2022. HE K. Numerical simulation analysis of damage and failure process of concrete materials based on micromechanics[D]. Lanzhou: Lanzhou Jiatong University, 2022 (in Chinese). [32] 黄政宇. 土木工程材料[M]. 北京: 高等教育出版社, 2002: 74-80. HUANG Z Y. Civil engineering materials[M]. Beijing: Higher Education Press, 2002: 74-80 (in Chinese). |