[1] LIU H Z, ZHANG Q, LI V, et al. Durability study on engineered cementitious composites (ECC) under sulfate and chloride environment[J]. Construction and Building Materials, 2017, 133: 171-181. [2] ARCE G A, NOORVAND H, HASSAN M M, et al. Feasibility of low fiber content PVA-ECC for jointless pavement application[J]. Construction and Building Materials, 2021, 268: 121131. [3] SU Y F, HUANG C H, JEONG H, et al. Autogenous healing performance of internal curing agent-based self-healing cementitious composite[J]. Cement and Concrete Composites, 2020, 114: 103825. [4] VIEIRA D R, CALMON J L, COELHO F Z. Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: a review[J]. Construction and Building Materials, 2016, 124: 656-666. [5] HISSEINE O A, TAGNIT-HAMOU A. Development of ecological strain-hardening cementitious composites incorporating high-volume ground-glass pozzolans[J]. Construction and Building Materials, 2020, 238: 117740. [6] 李 方, 杨 健, 李粒珲. 废玻璃粉作为辅助胶凝材料对砂浆性能影响及作用机理[J]. 硅酸盐通报, 2022, 41(9): 3208-3218. LI F, YANG J, LI L H. Effect and mechanism of waste glass powder as supplementary cementitious material on mortar properties[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3208-3218 (in Chinese). [7] YU K Q, ZHU W J, DING Y, et al. Micro-structural and mechanical properties of ultra-high performance engineered cementitious composites (UHP-ECC) incorporation of recycled fine powder (RFP)[J]. Cement and Concrete Research, 2019, 124: 105813. [8] 蔡新江, 戴朝炜, 邵永健, 等. 再生玻璃作为辅助胶凝材料制备ECC的力学及变形性能[J]. 硅酸盐通报, 2020, 39(9): 2739-2744. CAI X J, DAI C W, SHAO Y J, et al. Mechanical and deformation properties of engineered cementitious composites containing recycled glass as supplementary cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2739-2744 (in Chinese). [9] ZHAO J J, YAN C W, LIU S G, et al. Effect of solid waste ceramic on uniaxial tensile properties and thin plate bending properties of polyvinyl alcohol engineered cementitious composite[J]. Journal of Cleaner Production, 2020, 268: 122329. [10] GUERRA B C, BAKCHAN A, LEITE F, et al. BIM-based automated construction waste estimation algorithms: the case of concrete and drywall waste streams[J]. Waste Management, 2019, 87: 825-832. [11] 刘荣涛, 朱建辉, 朱玮杰, 等. 建筑废弃黏土砖资源化综合利用综述[J]. 硅酸盐通报, 2016, 35(10): 3191-3195. LIU R T, ZHU J H, ZHU W J, et al. Comprehensive research on utilizing the wasted building clay brick[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(10): 3191-3195 (in Chinese). [12] HWANG C L, DAMTIE YEHUALAW M, VO D H, et al. Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders[J]. Construction and Building Materials, 2019, 218: 519-529. [13] LI S J, GAO J M, LI Q Y. et al. Investigation of using recycled powder from the preparation of recycled aggregate as a supplementary cementitious material[J]. Construction and Building Materials, 2020, 267(18): 120976. [14] 贺炳楠, 闫 龙, 李玉博. 物理激发再生微粉对再生混凝土力学性能的影响[J]. 材料导报, 2023, 37(增刊1): 170-174. HE B N, YAN L, LI Y B. Effect of physically excited recycled micronised powder on the mechanical properties of recycled concrete[J]. Materials Reports, 2023, 37(supplement 1): 170-174 (in Chinese). [15] 余昭阳, 刘润清, 葛 星, 等. 碱激发再生黏土砖粉泡沫混凝土性能研究[J]. 混凝土与水泥制品, 2022(5): 81-85+89. YU Z Y, LIU R Q, GE X, et al. Study on properties of alkali activated recycled clay brick powder foamed concrete[J]. China Concrete and Cement Products, 2022(5): 81-85+89 (in Chinese). [16] 王 倩, 李华伟, 刘飞宇. 不同激发剂对陶瓷微粉水泥胶砂强度的影响[J]. 非金属矿, 2023, 46(1): 47-50+54. WANG Q, LI H W, LIU F Y. Effect of different activators on the strength of cement mortar containing ceramic micropowder[J]. Non-Metallic Mines, 2023, 46(1): 47-50+54 (in Chinese). [17] 田 野. 活性激发后再生砖粉ECC基本力学性能研究[D]. 郑州: 郑州大学, 2021. TIAN Y. Study on basic mechanical properties of recycled brick powder ECC after active excitation[D].Zhengzhou: Zhengzhou University, 2021 (in Chinese). [18] Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete: ASTM C618—05[S]. ASTM International, 2005. [19] TANG Q, MA Z M, WU H X, et al. The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: a critical review[J]. Cement and Concrete Composites, 2020, 114: 103807. [20] ZHAO Y S, GAO J M, LIU C B, et al. The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement[J]. Journal of Cleaner Production, 2020, 242: 118521. [21] GUZZO P L, SANTOS J B, DAVID R C. Particle size distribution and structural changes in limestone ground in planetary ball mill[J]. International Journal of Mineral Processing, 2014, 126: 41-48. [22] LI T T, SUI F F, LI F C, et al. Effects of dry grinding on the structure and granularity of calcite and its polymorphic transformation into aragonite[J]. Powder Technology, 2014, 254: 338-343. [23] GUZZO P L, MARINHO DE BARROS F B, DE ARRUDA TINO A A. Effect of prolonged dry grinding on size distribution, crystal structure and thermal decomposition of ultrafine particles of dolostone[J]. Powder Technology, 2019, 342: 141-148. [24] CHAI L J, GUO L P, CHEN B, et al. Tensile behaviors of ecological high ductility cementitious composites exposed to interactive freeze-thaw-carbonation and single carbonation[J]. Journal of Southeast University (English Edition), 2019, 35(3): 367-373. [25] YANG Y Z, GAO X J, DENG H W, et al. Effects of water/binder ratio on the properties of engineered cementitious composites[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2010, 25(2): 298-302. |