[1] XING C, HAO Y, XIA A, et al. Polypyrrole/Fe3O4 nanocomposites anchored on graphene toward efficient electromagnetic wave absorption performance[J]. Synthetic Metals, 2024, 306: 117628. [2] STEFANIUK D, SOBÓTKA M, JARCZEWSKA K, et al. Microstructure properties of cementitious mortars with selected additives for electromagnetic waves absorbing applications[J]. Cement and Concrete Composites, 2022, 134: 104732. [3] SHI Y, JING H, LIU B, et al. Electromagnetic (EM) wave absorption properties of cementitious building composites containing MnZn ferrite: preferable effective bandwidth and thickness via iron and graphite addition[J]. Journal of Magnetism and Magnetic Materials, 2022, 560: 169555. [4] LIU H, YANG Q, XIAO H, et al. Influence and mechanism of ultra-high molecular weight polyethylene on mechanical and electromagnetic shielding properties of alkali-activated composite mortar based on magnesium slag, blast-furnace slag and silica fume[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112437. [5] 魏胜斌, 谢建斌, 管洪涛, 等.复合石墨烯-铁氧体砂浆电磁防护性能研究[J/OL]. 建筑材料学报, 1-13(2023-05-05)[2024-06-11].http://kns.cnki.net/kcms/detail/31.1764.tu.20230602.1831.028.html. WEI S B, XIE J B, GUAN H T, et al. Research on electromagnetic protection performance of composite graphene-ferrite mortar[J/OL]. Journal of Building Materials, 1-13(2023-05-05) [2024-06-11]. http://kns.cnki.net/kcms/detail/31.1764.tu.20230602.1831.028.html (in Chinese). [6] 张秀芝, 孙 伟, 赵俊峰. 铁氧体粉掺量对水泥基材料吸波性能和力学性能的影响[J]. 解放军理工大学学报(自然科学版), 2011, 12(5): 466-471. ZHANG X Z, SUN W, ZHAO J F. Effects of ferrite powder doping on wave absorption and mechanical properties of cementitious materials[J]. Journal of PLA University of Technology (Natural Science Edition), 2011, 12(5): 466-471 (in Chinese). [7] 肖 万. 矿渣微细粉对水泥基材料性能及水化进程影响的研究[D]. 北京: 中国地质大学(北京), 2013. XIAO W. Study on the effect of slag microfine powder on the properties and hydration process of cementitious materials[D]. Beijing: China University of Geosciences (Beijing), 2013 (in Chinese). [8] 倪梦然, 张超智, 高 蕾. 石墨烯基吸波材料的研究进展[J]. 南京大学学报(自然科学), 2022, 58(3): 540-559. NI M R, ZHANG C Z, GAO L. Research progress of graphene-based wave-absorbing materials[J]. Journal of Nanjing University (Natural Science), 2022, 58(3): 540-559 (in Chinese). [9] 杨国栋, 苑高千, 张竞哲, 等. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457. YANG G D, YUAN G Q, ZHANG J Z, et al. Porous electromagnetic wave absorbing materials[J]. Advances in Chemistry, 2023, 35(3): 445-457 (in Chinese). [10] 张月芳. 纤维增强水泥基电磁波吸收材料制备及性能[D]. 大连: 大连理工大学, 2018. ZHANG Y F. Preparation and properties of fiber-reinforced cement-based electromagnetic wave absorbing materials [D]. Dalian: Dalian University of Technology, 2018 (in Chinese). [11] FAROOQ I, ISLAM M U, DANISH M, et al. Synergistic effects of Li-based ferrite and graphene oxide in microwave absorption applications[J]. Synthetic Metals, 2024: 117674. [12] 马海晶, 王增奎, 潘 昊, 等. 膨胀石墨/聚苯胺原位复合材料导电性能研究[J]. 化工新型材料, 2011, 39(9): 78-80+117. MA H J, WANG Z K, PAN H, et al. Study on the electrical conductivity of expanded graphite/polyaniline in-situ composites[J]. New Chemical Materials, 2011, 39(9): 78-80+117 (in Chinese). [13] 刘保荣, 黄智斌, 罗 发, 等. 碳/氧化铝/二氧化硅涂层的介电和吸波性能研究[J]. 无机材料学报, 2012, 27(8): 817-821. LIU B R, HUANG Z B, LUO F, et al. Study on dielectric and wave-absorbing properties of carbon/alumina/silica coatings[J]. Journal of Inorganic Materials, 2012, 27(8): 817-821 (in Chinese). [14] QIN M, ZHANG L, WU H. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science, 2022, 9(10): 2105553. [15] SAOTOME H, AZUMA K, KIZUKA H, et al. Properties of dynamic magnetic loss of ferrite[J]. AIP Advances, 2018, 8(5): 1157. [16] 贾兴文, 张亚杰, 钱觉时, 等. 石墨泡沫混凝土的吸波性能研究[J]. 功能材料, 2012, 43(17): 2397-2400. JIA X W, ZHANG Y J, QIAN J S, et al. Study on the wave-absorbing properties of graphite foam concrete[J]. Functional Materials, 2012, 43(17): 2397-2400 (in Chinese). [17] ZHAO Y, WANG W, WANG J, et al. Constructing multiple heterogeneous interfaces in the composite of bimetallic MOF-derivatives and rGO for excellent microwave absorption performance[J]. Carbon, 2021, 173: 1059-1072. |