[1] MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: designed aggregates to enhance dynamic performance[J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69-81. [2] 陈俊豪, 曾晓辉, 谢友均, 等. 具有减振功能的混凝土超材料的带隙特性[J]. 硅酸盐学报, 2023, 51(5): 1272-1282. CHEN J H, ZENG X H, XIE Y J, et al. Band gap properties of metaconcrete with vibration reduction function[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1272-1282 (in Chinese). [3] TAN K T, HUANG H H, SUN C T. Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials[J]. International Journal of Impact Engineering, 2014, 64: 20-29. [4] MITCHELL S J, PANDOLFI A, ORTIZ M. Investigation of elastic wave transmission in a metaconcrete slab[J]. Mechanics of Materials, 2015, 91: 295-303. [5] MITCHELL S J, PANDOLFI A, ORTIZ M. Effect of brittle fracture in a metaconcrete slab under shock loading[J]. Journal of Engineering Mechanics, 2016, 142(4): 04016010. [6] OYELADE A, ABIODUN Y O, SADIQ M O. Dynamic behaviour of concrete containing aggregate resonant frequency[J]. Applied and Computational Mechanics, 2018, 49: 380-385. [7] TAN S H, POH L H, TKALICH D. Homogenized enriched model for blast wave propagation in metaconcrete with viscoelastic compliant layer[J]. International Journal for Numerical Methods in Engineering, 2019, 119(13): 1395-1418. [8] JIN H X, CHEN W S, HAO H, et al. Numerical study on impact resistance of metaconcrete[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(2): 024609. [9] JIN H X, HAO H, HAO Y F, et al. Predicting the response of locally resonant concrete structure under blast load[J]. Construction and Building Materials, 2020, 252: 118920. [10] KETTENBEIL C, RAVICHANDRAN G. Experimental investigation of the dynamic behavior of metaconcrete[J]. International Journal of Impact Engineering, 2018, 111: 199-207. [11] JIN H X, HAO H, CHEN W S, et al. Spall behaviors of metaconcrete: 3d meso-scale modelling[J]. International Journal of Structural Stability and Dynamics, 2021, 21(9): 2150121. [12] BRICCOLA D, ORTIZ M, PANDOLFI A. Experimental validation of metaconcrete blast mitigation properties[J]. Journal of Applied Mechanics, 2017, 84(3): 031001. [13] BRICCOLA D, TOMASIN M, NETTI T, et al. The influence of a lattice-like pattern of inclusions on the attenuation properties of metaconcrete[J]. Frontiers in Materials, 2019, 6: 35. [14] XU C, CHEN W S, HAO H, et al. Dynamic compressive properties of metaconcrete material[J]. Construction and Building Materials, 2022, 351: 128974. [15] 韩 洁, 路国运. 超材料混凝土单胞骨料的无阻尼自由振动特性研究[J]. 振动与冲击, 2021, 40(8): 173-178+215. HAN J, LU G Y. A study of undamped free vibration characteristics on a metaconcrete unit cell[J]. Journal of Vibration and Shock, 2021, 40(8): 173-178+215 (in Chinese). [16] 张 恩, 路国运, 杨会伟, 等. 超材料混凝土的带隙特征及对冲击波的衰减效应[J]. 爆炸与冲击, 2020, 40(6): 69-77. ZHANG E, LU G Y, YANG H W, et al. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion and Shock Waves, 2020, 40(6): 69-77 (in Chinese). [17] CHEN J H, ZENG X H, UMAR H A, et al. Research on vibration reduction performance of metaconcrete based on local resonance theory[J]. Journal of Building Engineering, 2023, 71: 106520. [18] 陈俊豪, 曾晓辉, 谢友均, 等. 多重谐振水泥基声子晶体带隙特性研究[J]. 材料导报, 2024, 38(12): 94-102. CHEN J H, ZENG X H, XIE Y J, et al. Research on band gaps characteristics of multiple resonant cement-based phononic crystals[J]. Materials Reports, 2024, 38(12): 94-102 (in Chinese). [19] XU C, CHEN W S, HAO H. The influence of design parameters of engineered aggregate in metaconcrete on bandgap region[J]. Journal of the Mechanics and Physics of Solids, 2020, 139: 103929. [20] KRUSHYNSKA A O, KOUZNETSOVA V G, GEERS M G D. Towards optimal design of locally resonant acoustic metamaterials[J]. Journal of the Mechanics and Physics of Solids, 2014, 71: 179-196. |