[1] TAN H B, ZHANG X, HE X Y, et al. Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste[J]. Journal of Cleaner Production, 2018, 205: 536-551. [2] HE Z H, DU S G, CHEN D. Microstructure of ultra high performance concrete containing lithium slag[J]. Journal of Hazardous Materials, 2018, 353: 35-43. [3] LU J H, YU Z X, ZHU Y Z, et al. Effect of lithium-slag in the performance of slag cement mortar based on least-squares support vector machine prediction[J]. Materials, 2019, 12(10): 1652. [4] DING Z, MA W H, WEI K X, et al. Boron removal from metallurgical-grade silicon using lithium containing slag[J]. Journal of Non-Crystalline Solids, 2012, 358(18/19): 2708-2712. [5] CHEN D, HU X, SHI L, et al. Synthesis and characterization of zeolite X from lithium slag[J]. Applied Clay Science, 2012, 59: 148-151. [6] AHMAD M R, CHEN B, YU J. A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash[J]. Composites Part B: Engineering, 2019, 168: 204-217. [7] 邹博文, 龚丹丹, 闫 硕, 等. 锂云母冶炼渣处理技术现状[J]. 当代化工研究, 2024(18): 108-110. ZOU B W, GONG D D, YAN S, et al. Analysis of the current status of lithium mica smelting slag treatment technology[J]. Modern Chemical Research, 2024(18): 108-110 (in Chinese). [8] 金志斌, 王海超, 刘瀚和. 锂渣填埋场污水调节池容积设计的探讨[J]. 有色冶金设计与研究, 2024, 45(4): 49-52. JIN Z B, WANG H C, LIU H H. Discussion on the volume design of sewage regulating tank in lithium slag landfill site[J]. Nonferrous Metals Engineering & Research, 2024, 45(4): 49-52 (in Chinese). [9] GU T, ZHANG G Y, WANG Z Y, et al. Review: the formation, characteristics, and resource utilization of lithium slag[J]. Construction and Building Materials, 2024, 432: 136648. [10] QIU Y X, WU D F, YAN L L, et al. Recycling of spodumene slag: preparation of green polymer composites[J]. RSC Advances, 2016, 6(43): 36942-36953. [11] YE N, CHEN Y, YANG J K, et al. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system[J]. Journal of Hazardous Materials, 2016, 318: 70-78. [12] NATH S K. Fly ash and zinc slag blended geopolymer: immobilization of hazardous materials and development of paving blocks[J]. Journal of Hazardous Materials, 2020, 387: 121673. [13] HOSSAIN M U, POON C S, DONG Y H, et al. Evaluation of environmental impact distribution methods for supplementary cementitious materials[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 597-608. [14] LIU Z, WANG J X, LI L, et al. Characteristics of alkali-activated lithium slag at early reaction age[J]. Journal of Materials in Civil Engineering, 2019, 31(12): 04019312. [15] JAVED U, SHAIKH F U A, SARKER P K. Microstructural investigation of lithium slag geopolymer pastes containing silica fume and fly ash as additive chemical modifiers[J]. Cement and Concrete Composites, 2022, 134: 104736. [16] 陈忠发, 鲁 亚, 严 峻, 等. 锂渣掺量对锂渣-矿渣碱激发低碳胶凝材料的性能影响[J]. 江西建材, 2024(增刊1): 39-42. CHEN Z F, LU Y, YAN J, et al. The effect of lithium slag content on the performance of lithium slag-slag alkali activated low-carbon cementitious materials[J]. Jiangxi Building Materials, 2024(supplement 1): 39-42 (in Chinese). [17] ALI SHAH S F, CHEN B, AHMAD M R, et al. Development of cleaner one-part geopolymer from lithium slag[J]. Journal of Cleaner Production, 2021, 291: 125241. [18] SHAH S F A, CHEN B, ODERJI S Y, et al. Comparative study on the effect of fiber type and content on the performance of one-part alkali-activated mortar[J]. Construction and Building Materials, 2020, 243: 118221. [19] NEMATOLLAHI B, SANJAYAN J, SHAIKH F U A. Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate[J]. Ceramics International, 2015, 41(4): 5696-5704. [20] LUUKKONEN T, ABDOLLAHNEJAD Z, YLINIEMI J, et al. One-part alkali-activated materials: a review[J]. Cement and Concrete Research, 2018, 103: 21-34. [21] 曹明莉, 许 玲, 张 聪. 不同水灰比、砂灰比下碳酸钙晶须对水泥砂浆流变性的影响[J]. 硅酸盐学报, 2016, 44(2): 246-252. CAO M L, XU L, ZHANG C. Influence of calcium carbonate whisker on rheology of cement mortar with different water-cement ratios and sand-cement ratios[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 246-252 (in Chinese). [22] PHAIR J W, VAN DEVENTER J S J. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers[J]. Minerals Engineering, 2001, 14(3): 289-304. [23] WANG W L, FAN C C, WANG B M, et al. Workability, rheology, and geopolymerization of fly ash geopolymer: role of alkali content, modulus, and water-binder ratio[J]. Construction and Building Materials, 2023, 367: 130357. [24] FANG S, LAM E S S, LI B, et al. Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag[J]. Construction and Building Materials, 2020, 249: 118799. [25] CHANG J J. A study on the setting characteristics of sodium silicate-activated slag pastes[J]. Cement and Concrete Research, 2003, 33(7): 1005-1011. [26] KHAYAT K H, MENG W N, VALLURUPALLI K, et al. Rheological properties of ultra-high-performance concrete: an overview[J]. Cement and Concrete Research, 2019, 124: 105828. [27] HAN F H, PU S C, ZHOU Y, et al. Effect of ultrafine mineral admixtures on the rheological properties of fresh cement paste: a review[J]. Journal of Building Engineering, 2022, 51: 104313. [28] DE LARRARD F, FERRARIS C F, SEDRAN T. Fresh concrete: a Herschel-Bulkley material[J]. Materials and Structures, 1998, 31(7): 494-498. [29] HOT J, BESSAIES-BEY H, BRUMAUD C, et al. Adsorbing polymers and viscosity of cement pastes[J]. Cement and Concrete Research, 2014, 63: 12-19. [30] HE Y, YOU C Y, JIANG M J, et al. Rheological performance and hydration kinetics of lithium slag-cement binder in the function of sodium sulfate[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(21): 11653-11668. [31] KE G J, ZHANG J, XIE S X, et al. Rheological behavior of calcium sulfoaluminate cement paste with supplementary cementitious materials[J]. Construction and Building Materials, 2020, 243: 118234. [32] ZHONG Q Y, NIE H, XIE G L, et al. Experimental study on the characteristics, rheological factors, and flowability of MK-GGBFS geopolymer slurry[J]. Journal of Building Engineering, 2023, 76: 107300. [33] ZHANG P P, MUHAMMAD F, YU L, et al. Self-cementation solidification of heavy metals in lead-zinc smelting slag through alkali-activated materials[J]. Construction and Building Materials, 2020, 249: 118756. [34] 杨 光, 赵 宇, 朱伶俐, 等. 碱激发偏高岭土基地质聚合物的制备及抗压强度研究[J]. 硅酸盐通报, 2022, 41(3): 894-902. YANG G, ZHAO Y, ZHU L L, et al. Preparation and compressive strength of geopolymer based on alkali activated metakaolin[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 894-902 (in Chinese). [35] BIAN Z W, JIN G W, JI T. Effect of combined activator of Ca(OH)2 and Na2CO3 on workability and compressive strength of alkali-activated ferronickel slag system[J]. Cement and Concrete Composites, 2021, 123: 104179. [36] WANG J F, LAI J, LU L L, et al. Effect of CaO/Na2SiO3 ratio on mechanical properties, microstructures and environmental leaching characteristics of neutralization slag based geopolymers[J]. Case Studies in Construction Materials, 2024, 20: e03021. [37] ASKARIAN M, TAO Z, SAMALI B, et al. Mix composition and characterisation of one-part geopolymers with different activators[J]. Construction and Building Materials, 2019, 225: 526-537. [38] WANG X J, YANG W, LIU H, et al. Strength and microstructural analysis of geopolymer prepared with recycled geopolymer powder[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2021, 36(3): 439-445. [39] 安 赛, 王宝民, 陈文秀, 等. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. AN S, WANG B M, CHEN W X, et al. Interaction mechanism of carbide slag activating slag-fly ash composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1333-1343 (in Chinese). [40] KAN L L, WANG W S, LIU W D, et al. Development and characterization of fly ash based PVA fiber reinforced engineered geopolymer composites incorporating metakaolin[J]. Cement and Concrete Composites, 2020, 108: 103521. [41] XIANG J C, LIU L P, HE Y, et al. Early mechanical properties and microstructural evolution of slag/metakaolin-based geopolymers exposed to Karst water[J]. Cement and Concrete Composites, 2019, 99: 140-150. [42] ISHWARYA G, SINGH B, DESHWAL S, et al. Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes[J]. Cement and Concrete Composites, 2019, 97: 226-238. |