BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (7): 2355-2367.DOI: 10.16552/j.cnki.issn1001-1625.2024.1380
• Cement and Concrete • Next Articles
CAO Ruidong1, WANG Yibo1, ZHAO Jie2, CHEN Haojie1, DUAN Rui1, REN Linjie1
Received:2024-11-13
Revised:2025-02-06
Online:2025-07-15
Published:2025-07-24
CLC Number:
CAO Ruidong, WANG Yibo, ZHAO Jie, CHEN Haojie, DUAN Rui, REN Linjie. Research Progress on Corrosion Behavior of Hydraulic Lime[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2355-2367.
| [1] GARIJO L, ZHANG X X, RUIZ G, et al. Age effect on the mechanical properties of natural hydraulic and aerial lime mortars[J]. Construction and Building Materials, 2020, 236: 117573. [2] AGGELAKOPOULOU E, BAKOLAS A, MOROPOULOU A. Properties of lime-metakolin mortars for the restoration of historic masonries[J]. Applied Clay Science, 2011, 53(1): 15-19. [3] 戴仕炳, 钟 燕, 胡战勇, 等. 明《天工开物》之“风吹成粉” 工法初步研究[J]. 文物保护与考古科学, 2018, 30(1): 106-11. DAI S B, ZHONG Y, HU Z Y, et al. Preliminary study of lime slaked by wind according to the book, Heavenly Creations (Chinese technology in the seventeenth century)[J]. Sciences of Conservation and Archaeology, 2018, 30(1): 106-113 (in Chinese). [4] 杨建林, 宋文伟, 王来贵, 等. 姜石合成水硬性石灰及物理力学性能研究[J]. 岩石力学与工程学报, 2018, 37(7): 1766-1775. YANG J L, SONG W W, WANG L G, et al. Research on the synthesis and physical-mechanical properties of hydraulic lime prepared from loess-doll[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1766-1775 (in Chinese). [5] 胡 敏, 唐 倩, 彭剑飞, 等. 我国大气颗粒物来源及特征分析[J]. 环境与可持续发展, 2011, 36(5): 15-19. HU M, TANG Q, PENG J F, et al. Study on characterization and source apportionment of atmospheric particulate matter in China[J]. Environment and Sustainable Development, 2011, 36(5): 15-19 (in Chinese). [6] ISEBAERT A, VAN PARYS L, CNUDDE V. Composition and compatibility requirements of mineral repair mortars forstone: a review[J]. Construction and Building Materials, 2014, 59: 39-50. [7] BAKHSHIPOUR Z, ASADI A, HUAT B B K, et al. Effect of acid rain on geotechnical properties of residual soils[J]. Soils and Foundations, 2016, 56(6): 1008-1020. [8] 李新明, 路广远, 张浩扬, 等. 石灰偏高岭土改良粉砂土强度特性与微观机理[J]. 建筑材料学报, 2021, 24(3): 648-655. LI X M, LU G Y, ZHANG H Y, et al. Strength characteristics and micro-mechanism of lime-metakaolin modified silty soil[J]. Journal of Building Materials, 2021, 24(3): 648-655 (in Chinese). [9] BELLMANN F, MÖSER B, STARK J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen[J]. Cement and Concrete Research, 2006, 36(2): 358-363. [10] 李 黎, 赵林毅, 王金华, 等. 我国古代建筑中两种传统硅酸盐材料的物理力学特性研究[J]. 岩石力学与工程学报, 2011, 30(10): 2120-2127. LI L, ZHAO L Y, WANG J H, et al. Research on physical and mechanical characteristics of two traditional silicate materials in Chinese ancient buildings[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2120-2127 (in Chinese). [11] 周伟强, 周 萍, 王永进. 砖石文物病害及分类概述[J]. 文博, 2014(6): 73-75. ZHOU W Q, ZHOU P, WANG Y J. Overview of diseases and classification of masonry cultural relics[J]. Relics and Museolgy, 2014(6): 73-75 (in Chinese). [12] 牛建刚, 刘威亨. 酸雨侵蚀混凝土研究进展[J]. 灾害学, 2020, 35(4): 147-150+168. NIU J G, LIU W H. Research progress on acid rain erosion of concrete[J]. Journal of Catastrophology, 2020, 35(4): 147-150+168 (in Chinese). [13] 宋明鸿, 王 成, 葛广华, 等. 氯盐-硫酸盐内外源耦合作用下现浇玄武岩纤维混凝土耐腐蚀试验[J]. 混凝土, 2024, (11): 43-50. SONG M H, WANG C, GE G H, et al. Corrosion resistance test of cast-in-place basalt fiber reinforced concrete under the coupling effect of internal and external chloride and sulfatep[J]. Concrete, 2024, (11): 43-50 (in Chinese). [14] 徐 飞, 杨隽永, 杨 毅. 水硬石灰作为贺兰口岩画加固材料的耐候性能研究[J]. 文物保护与考古科学, 2016, 28(4): 31-39. XU F, YANG J Y, YANG Y. Weather resistance of hydraulic lime used as a reinforcement material at the Helankou rock painting site[J]. Sciences of Conservation and Archaeology, 2016, 28(4): 31-39 (in Chinese). [15] 徐树强. 文物建筑修复用天然水硬性石灰的有机/无机复合改性研究[D]. 北京: 北京科技大学, 2020. XU S Q. Study on organic/inorganic composite modification of natural hydraulic lime for restoration of historic buildings[D]. Beijing: University of Science and Technology Beijing, 2020 (in Chinese). [16] 薄 艾, 张大江, 王璜琪, 等. 煅烧工艺对天然水硬性石灰中硅酸二钙晶相转变的影响[J]. 硅酸盐通报, 2022, 41(4): 1336-1342. BO A, ZHANG D J, WANG H Q, et al. Influence of calcination process on C2S crystal transformation in natural hydraulic lime[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1336-1342 (in Chinese). [17] 彭反三. 天然水硬性石灰[J]. 石灰, 2009, 3: 44-48. PENG F S. Natural hydraulic lime[J]. Lime, 2009, 3: 44-48 (in Chinese). [18] 肖建强. 水硬性石灰的设计制备与性能研究[D]. 南京: 东南大学, 2015. XIAO J Q. Research on the preparation and properties of hydraulic lime[D]. Nanjing: Southeast University, 2015 (in Chinese). [19] 戴仕炳, 王金华, 胡 源, 等. 天然水硬性石灰的历史及其在文物和历史建筑保护中的应用研究[C]//中国石灰工业技术交流与合作大会论文集, 2009, 149-162. DAI S B, WANG J H, HU Y, et al. A study on the history of natural hydraulic-lime and its application in the conservation of cultural relics and historic buildings[C]//Proceedings of the China Lime Industry Technology Exchange and Cooperation Conference, 2009, 149-162 (in Chinese). [20] CHEN X, SHAN X R, SHI Z J, et al. Analysis of the spatio-temporal changes in acid rain and their causes in China (1998-2018)[J]. Journal of Resources and Ecology, 2021, 12(5): 593-599. [21] 徐树强. 天然水硬性石灰固化机理及其砂浆改性研究[D]. 北京: 北京化工大学, 2015. XU S Q. Study of hydration and carbonation mechanism of natural hydraulic lime and modification of its mortars[D]. Beijing: Beijing University of Chemical Technology, 2015 (in Chinese). [22] 张全政. 水胶比对天然水硬性石灰砂浆的影响及改性研究[D]. 淮南: 安徽理工大学, 2022. ZHANG Q Z. Influence of water binder ratio on natural hydraulic lime mortar and its modification[D]. Huainan: Anhui University of Science & Technology, 2022 (in Chinese). [23] 张大江. 水硬性石灰基材料的水化碳化机理和微结构演变机制研究[D]. 北京: 中国矿业大学(北京), 2021. ZHANG D J. Study on hydration and carbonation mechanism and micro-structural evolution of hydraulic lime based materials[D]. Beijing: China University of Mining & Technology, Beijing, 2021 (in Chinese). [24] XU S Q, WANG J L, MA Q L, et al. Study on the lightweight hydraulic mortars designed by the use of diatomite as partial replacement of natural hydraulic lime and masonry waste as aggregate[J]. Construction and Building Materials, 2014, 73: 33-40. [25] XU S Q, WANG J L, JIANG Q, et al. Study of natural hydraulic lime-based mortars prepared with masonry waste powder as aggregate and diatomite/fly ash as mineral admixtures[J]. Journal of Cleaner Production, 2016, 119: 118-127. [26] ZHANG D J, ZHAO J H, WANG D M, et al. Comparative study on the properties of three hydraulic lime mortar systems: natural hydraulic lime mortar, cement-aerial lime-based mortar and slag-aerial lime-based mortar[J]. Construction and Building Materials, 2018, 186: 42-52. [27] ZHANG D J, ZHAO J H, WANG D M, et al. Influence of pozzolanic materials on the properties of natural hydraulic lime based mortars[J]. Construction and Building Materials, 2020, 244: 118360. [28] ZHANG D J, FANG K Z, XU D, et al. Evaluation of the environmental medium erosion resistance of natural hydraulic lime and metakaolin-air lime mortars[J]. Case Studies in Construction Materials, 2023, 18: e02044. [29] 罗 凯. 天然水硬性石灰的设计制备及性能研究[D]. 绵阳: 西南科技大学, 2020. LUO K. Research on the preparation and performance of natural hydraulic lime[D]. Mianyang: Southwest University of Science and Technology, 2020 (in Chinese). [30] 张云升, 王晓辉, 肖建强, 等. 古建水硬性石灰材料的制备与耐久性能[J]. 建筑材料学报, 2018, 21(1): 143-149. ZHANG Y S, WANG X H, XIAO J Q, et al. Preparation and durability of hydraulic lime used as repairing materials for architectural heritage[J]. Journal of Building Materials, 2018, 21(1): 143-149 (in Chinese). [31] XU S Q, WANG J L, SUN Y Z. Effect of water binder ratio on the early hydration of natural hydraulic lime[J]. Materials and Structures, 2015, 48(10): 3431-3441. [32] 叶 良, 李强强, 孙平平, 等. 基于正交层次分析法的水硬性石灰注浆材料配合比优化试验研究[J]. 四川建筑科学研究, 2018, 44(2): 105-110. YE L, LI Q Q, SUN P P, et al. Experimental study on proportioning optimization of hydraulic lime grouting material based on orthogonal AHP[J]. Sichuan Building Science, 2018, 44(2): 105-110 (in Chinese). [33] ARIZZI A, CULTRONE G. Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: a mineralogical, textural and physical-mechanical study[J]. Construction and Building Materials, 2012, 31: 135-143. [34] MARAVELAKI-KALAITZAKI P, BAKOLAS A, KARATASIOS I, et al. Hydraulic lime mortars for the restoration of historic masonry in Crete[J]. Cement and Concrete Research, 2005, 35(8): 1577-1586. [35] VEJMELKOVÁ E, KEPPERT M, KERNER Z, et al. Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime-metakaolin plasters for renovation of historical buildings[J]. Construction and Building Materials, 2012, 31: 22-28. [36] IZAGUIRRE A, LANAS J, J I Á. Ageing of lime mortars with admixtures: durability and strength assessment[J]. Cement and Concrete Research, 2010, 40(7): 1081-1095. [37] PAIVA H, ESTEVES L P, CACHIM P B, et al. Rheology and hardened properties of single-coat render mortars with different types of water retaining agents[J]. Construction and Building Materials, 2009, 23(2): 1141-1146. [38] SEABRA M P, PAIVA H, LABRINCHA J A, et al. Admixtures effect on fresh state properties of aerial lime based mortars[J]. Construction and Building Materials, 2009, 23(2): 1147-1153. [39] XU S Q, WANG W Z, YANG X C, et al. Experimental investigation on comprehensive performance of natural hydraulic lime-based mortars: effect of waterproof admixtures addition[J]. International Journal of Architectural Heritage, 2024, 18(11): 1627-1642. [40] ZHU H M, CHEN J N, LI H. Effect of ultrafine pozzolanic powders on durability of fabricated hydraulic lime[J]. Case Studies in Construction Materials, 2022, 17: e01191. [41] 贺 鹏. 偏高岭土-天然水硬性石灰胶凝材料的制备及其轻集料改性研究[D]. 西安: 陕西科技大学, 2020. HE P. Study on preparation of metakaolin-natural hydraulic lime cementitious material and modification of light aggregate[D]. Xi’an: Shaanxi University of Science & Technology, 2020 (in Chinese). [42] XU S Q, MA Q L, WANG J L. Combined effect of isobutyltriethoxysilane and silica fume on the performance of natural hydraulic lime-based mortars[J]. Construction and Building Materials, 2018, 162: 181-191. [43] 李 悦, 于鹏超, 刘金鹏, 等. 改性水硬性石灰基材料的制备与耐久性[J]. 北京工业大学学报, 2017, 43(2): 269-277. LI Y, YU P C, LIU J P, et al. Preparation and durability of modified hydraulic lime-based material[J]. Journal of Beijing University of Technology, 2017, 43(2): 269-277 (in Chinese). [44] DEMIRCAN R K, TAYEH B A, CELIK D N, et al. The effect of animal and synthetic fibers on the physico-mechanical durability and microstructure properties of natural hydraulic lime-based mortars[J]. Materials Today Communications, 2023, 35: 106041. [45] SHANMUGAVEL D, KUMARYADAV P, KHADIMALLAH M A, et al. Experimental analysis on the performance of egg albumen as a sustainable bio admixture in natural hydraulic lime mortars[J]. Journal of Cleaner Production, 2021, 320: 128736. [46] KAMAT A, LUBELLI B, SCHLANGEN E. Effect of a mixed-in crystallization inhibitor on the properties of hydraulic mortars[J]. AIMS Materials Science, 2022, 9(4): 628-641. [47] RAVI R, SELVARAJ T, SEKAR S K. Characterization of hydraulic lime mortar containing Opuntia ficus-indica as a bio-admixture for restoration applications[J]. International Journal of Architectural Heritage, 2016, 10(6): 714-725. [48] RAVI R, THIRUMALINI S. Effect of natural polymers from cissus glauca roxb on the mechanical and durability properties of hydraulic lime mortar[J]. International Journal of Architectural Heritage, 2019, 13(2): 229-243. [49] DESTEFANI M, FALCHI L, ZENDRI E. Proposal of new natural hydraulic lime-based mortars for the conservation of historical buildings[J]. Coatings, 2023, 13(8): 1418. [50] VENTOLÀ L, VENDRELL M, GIRALDEZ P, et al. Traditional organic additives improve lime mortars: new old materials for restoration and building natural stone fabrics[J]. Construction and Building Materials, 2011, 25(8): 3313-3318. [51] LOGANINA V I, SIMONOV E E, JEZIERSKI W, et al. Application of activated diatomite for dry lime mixes[J]. Construction and Building Materials, 2014, 65: 29-37. [52] 马昆林. 混凝土盐结晶侵蚀机理与评价方法[D]. 长沙: 中南大学, 2009. MA K L. Mechanism and evaluation method of salt crystallization attack on concrete[D]. Changsha: Central South University, 2009 (in Chinese). [53] 李田雨, 王维康, 李扬涛, 等. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110. LI T Y, WANG W K, LI Y T, et al. Corrosion failure mechanism of ultra-high-performance concretes prepared with sea water and sea sand in an artificial sea water containing sulfate[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(5): 1101-1110 (in Chinese). [54] IKUMI T, CAVALARO S H P, SEGURA I, et al. Alternative methodology to consider damage and expansions in external sulfate attack modeling[J]. Cement and Concrete Research, 2014, 63: 105-116. [55] ZUO X B, SUN W, YU C. Numerical investigation on expansive volume strain in concrete subjected to sulfate attack[J]. Construction and Building Materials, 2012, 36: 404-410. [56] SOTIRIADIS K, MRÓZ R, MÁCOVÁ P, et al. Long-term sulfate resistance of synthesized cement systems with variable C3A/C4AF ratio at low temperature or ambient conditions: insights into the crystalline and amorphous phase assemblage[J]. Cement and Concrete Research, 2022, 160: 106902. [57] SILVA B A, FERREIRA PINTO A P, GOMES A. Natural hydraulic lime versus cement for blended lime mortars for restoration works[J]. Construction and Building Materials, 2015, 94: 346-360. [58] 宋哲航, 罗志明, 洪 军, 等. 硫酸盐与碳酸盐作用下碳硫硅钙石的生成研究[J]. 混凝土世界, 2022(9): 16-19. SONG Z H, LUO Z M, HONG J, et al. Study on the formation of thaumasite by the interaction of sulfate and carbonate[J]. China Concrete, 2022(9): 16-19 (in Chinese). [59] XU S Q, MA Q L, WANG J L, et al. Grouting performance improvement for natural hydraulic lime-based grout via incorporating silica fume and silicon-acrylic latex[J]. Construction and Building Materials, 2018, 186: 652-659. [60] DEGIRMENCI N, YILMAZ A. Use of diatomite as partial replacement for Portland cement in cement mortars[J]. Construction and Building Materials, 2009, 23(1): 284-288. [61] NAVRÁTILOVÁ E, ROVNANÍKOVÁ P. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars[J]. Construction and Building Materials, 2016, 120: 530-539. [62] CHANG Z T, SONG X J, MUNN R, et al. Using limestone aggregates and different cements for enhancing resistance of concrete to sulphuric acid attack[J]. Cement and Concrete Research, 2005, 35(8): 1486-1494. [63] YANG F W, ZHANG B J, PAN C C, et al. Traditional mortar represented by glutinous rice mortar-one of the major inventions in ancient China[J]. Chinese Science (Series E: Technical Science), 2009(1): 1-7. |
| [1] | ZHANG Zongyang, SHAMA Shibu, LUO Qi, LU Liulei, YE Weikai, SHENG Guodong, ZHANG Feng, DONG Faxin, LIU Mingwang, WANG Junfeng. Effect of Activator on Rheological and Mechanical Properties of One-Part Lithium Slag-Based Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2538-2548. |
| [2] | YU Xin, WANG Long, HE Pingping, LIU Yusong. Performance of Engineered Cementitious Composites Prepared with Gold Tailing Sand as Fine Aggregate [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2566-2577. |
| [3] | LI Xiangguo, BAO Luchao, HE Chenhao, ZHANG Chengshan, LYU Yang. Effects of Curing Methods on Hydration and Mechanical Properties of Magnesium Silicate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2368-2377. |
| [4] | LING Weicheng, KE Guojun, JIN Dan, CHEN Shanqiu, DUAN Xiongkaibin. Corrosion Inhibition of Rebar in Seawater-Sea Sand Concrete by MWCNTs/LDHs-NO2 [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2487-2494. |
| [5] | XIE Laikun, QIN Xiaohan, GUO Wenbin, ZHOU Mingkai. Carbonation Corrosion Resistance of Circulating Fluidized Bed Ash-Slag [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2528-2537. |
| [6] | HAN Zhongyu, LIU Fang, MAO Wenshu. Research Progress on Durability of Rubber Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2159-2171. |
| [7] | YI Qian, GU Jun, CHEN Weijie, XIANG Hao, GUO Zhenghao, GAO Sheng, LUO Shuqiong. Effect of Coal Gangue Fine Aggregate Modification Treatment onMortar Performance [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2193-2200. |
| [8] | WANG Jiaming, LI Jing, YANG Shuguang, LI Yaohuan, GU Kai, YUAN Bowen, LIU Dongsheng, GUO Qilong. Effect of Residual Flocculant PAM in Sand on Fluidity of Cement Mortar and Its Degradation Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2026-2035. |
| [9] | QI Guangzheng, ZHANG Qiang, LIU Xuan. Regulation Mechanism of Flue Gas Desulfurization Gypsum on Hydration Characteristics of Supersulfated Cement Co-Activated withCalcium Aluminate and Carbide Slag [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2250-2258. |
| [10] | XU Cundong, YANG Baichang, WANG Hairuo, ZOU Xuan, WANG Zhihang, LI Bofei. Mechanical Properties of Basalt Fiber Concrete under Compound Salt Freezing Erosion [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2101-2110. |
| [11] | HE Xinxin, WU Xinjiang, WANG Zilong, WANG Jing, WU Hao, LI Dejun, WANG Xia. Influence and Mechanism of High-Performance Admixture on Performance of Tunnel Shotcrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2121-2134. |
| [12] | REN Enzhong, ZHANG Xiang, DONG Longhui. Mechanical Properties of Cracked Concrete Specimens with Grouting Repair under Freeze-Thaw Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2135-2148. |
| [13] | MA Chunyu, MA Yuehui, WU Dingyuan, XU Lisheng, YUAN Xuegong, ZHU Zhen, LI Qiuyi, WANG Liang, WANG Meinan. Properties of Lightweight High-Toughness High Belite Cement Mortar Reinforced with Recycled Wood Fibers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1604-1611. |
| [14] | LUO Zhanpeng, XIONG Chunlin, HAN Zejun, WANG Shengxin, LIU Kaihua. Mechanical Properties and Solidification Mechanism of Slag-Fly Ash-Glass Powder Composite Solidified Shield Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1803-1812. |
| [15] | LIU Chenchen, XIE Xiangbing, LI Guanghui, SIMA Xiaoqing, ZHANG Yilin, SI Bin, SHAO Jinggan. Performance Evaluation of Wet Carbonization Recycled Sand Powder and Formation Mechanism of Early Strength of Cement Paste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1834-1840. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||