BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (8): 2873-2890.DOI: 10.16552/j.cnki.issn1001-1625.2025.0072
• Solid Waste and Eco-Materials • Previous Articles Next Articles
ZHOU Yifan1, ZHANG Weiye2, CHEN Anjian1, RAN Jinlin2, WANG Dongxing2,3
Received:2025-01-16
Revised:2025-03-14
Online:2025-08-15
Published:2025-08-22
CLC Number:
ZHOU Yifan, ZHANG Weiye, CHEN Anjian, RAN Jinlin, WANG Dongxing. Review on Performance Enhancements and Engineering Applications of Geopolymer Grouting Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2873-2890.
| [1] 刘汉龙, 赵明华. 地基处理研究进展[J]. 土木工程学报, 2016, 49(1): 96-115. LIU H L, ZHAO M H. Review of ground improvement technical and its application in China[J]. China Civil Engineering Journal, 2016, 49(1): 96-115 (in Chinese). [2] 张 彬, 徐能雄, 戴春森. 国际城市地下空间开发利用现状、趋势与启示[J]. 地学前缘, 2019, 26(3): 48-56. ZHANG B, XU N X, DAI C S. Current status, trend and revelation of worldwide urban underground space development and utilization[J]. Earth Science Frontiers, 2019, 26(3): 48-56 (in Chinese). [3] 王怡文. 数智赋能城市地下空间风险防控体系研究[D]. 徐州: 中国矿业大学, 2023. WANG Y W. Research on urban underground space risk prevention and control system empowered by data intelligence[D]. Xuzhou: China University of Mining and Technology, 2023 (in Chinese). [4] 陈金平, 王 娇, 甄 聪, 等. 盾构法同步注浆材料的试验研究综述[J]. 粉煤灰综合利用, 2018, 32(1): 75-80. CHEN J P, WANG J, ZHEN C, et al. Review of experimental research on synchronous grouting material for shield tunneling[J]. Fly Ash Comprehensive Utilization, 2018, 32(1): 75-80 (in Chinese). [5] 赵彦旭, 向俊燃, 吕擎峰, 等. 碱激发剂对地聚物固化黄土工程特性的影响[J]. 北京工业大学学报, 2021, 47(6): 636-643. ZHAO Y X, XIANG J R, LÜ Q F, et al. Effect of alkali activator on engineering properties of geopolymer-solidified loess[J]. Journal of Beijing University of Technology, 2021, 47(6): 636-643 (in Chinese). [6] 张 聪, 阳军生, 谢亦朋, 等. 富水岩溶越江盾构隧道注浆材料试验与应用研究[J]. 岩石力学与工程学报, 2018, 37(9): 2120-2130. ZHANG C, YANG J S, XIE Y P, et al. Experiment and application for grouting materials for Karst under conditions of underground water flow before shield tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2120-2130 (in Chinese). [7] 吴元昊, 孙 旻, 韩 磊, 等. 堵水注浆材料性能研究综述[J]. 四川建材, 2023, 49(8): 231-233. WU Y H, SUN M, HAN L, et al. A review of the performance of grouting materials for water blocking[J]. Sichuan Building Materials, 2023, 49(8): 231-233 (in Chinese). [8] FARHAN N A, SHEIKH M N, HADI M N S. Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete[J]. Construction and Building Materials, 2019, 196: 26-42. [9] 刘 杨, 张娅妮. 2022年水泥行业经济运行形势分析[J]. 中国建材, 2023, 72(3): 72-75. LIU Y, ZHANG Y N. Cement industry operating situation in 2022[J]. China Building Materials, 2023, 72(3): 72-75 (in Chinese). [10] 鹿晓泉, 田 野, 闫 力, 等. 国内外低碳水泥体系浅析[J]. 中国水泥, 2024(5): 54-55. LU X Q, TIAN Y, YAN L, et al. Analysis of low carbon cement system at home and abroad[J]. China Cement, 2024(5): 54-55 (in Chinese). [11] 秦鹏飞, 王 莉, 晋 芳, 等. 岩土工程不良地质注浆技术研究进展[J]. 安阳工学院学报, 2023, 22(4): 78-84. QIN P F, WANG L, JIN F, et al. New development of grouting technology in unfavorable geological body[J]. Journal of Anyang Institute of Technology, 2023, 22(4): 78-84 (in Chinese). [12] 陈大华, 袁世刚, 高 盼, 等. 聚合物砂浆研究进展[J]. 筑路机械与施工机械化, 2016, 33(2): 73-76. CHEN D H, YUAN S G, GAO P, et al. Development of polymer modified mortar[J]. Road Machinery & Construction Mechanization, 2016, 33(2): 73-76 (in Chinese). [13] 林楚轩, 孙宏磊, 翁振奇. 生物酶联合水泥固化淤泥力学性能及机理[J]. 哈尔滨工业大学学报, 2024, 56(7): 46-54. LIN C X, SUN H L, WENG Z Q. Strength and solidification mechanism of cement solidified sludge improved with biological enzyme[J]. Journal of Harbin Institute of Technology, 2024, 56(7): 46-54 (in Chinese). [14] 吴尚彬, 贾苍琴, 王贵和. 微生物土体改良技术研究综述[J]. 桂林理工大学学报, 2023, 43(2): 224-238. WU S B, JIA C Q, WANG G H. Review on microbial soil improvement technology[J]. Journal of Guilin University of Technology, 2023, 43(2): 224-238 (in Chinese). [15] VAN DEVENTER J S J, PROVIS J L, DUXSON P. Technical and commercial progress in the adoption of geopolymer cement[J]. Minerals Engineering, 2012, 29: 89-104. [16] MO K H, ALENGARAM U J, JUMAAT M Z. Structural performance of reinforced geopolymer concrete members: a review[J]. Construction and Building Materials, 2016, 120: 251-264. [17] ASSI L N, CARTER K, DEAVER E, et al. Review of availability of source materials for geopolymer/sustainable concrete[J]. Journal of Cleaner Production, 2020, 263: 121477. [18] NIKOLOV A, NUGTEREN H, ROSTOVSKY I. Optimization of geopolymers based on natural zeolite clinoptilolite by calcination and use of aluminate activators[J]. Construction and Building Materials, 2020, 243: 118257. [19] RANJBAR N, ZHANG M Z. Fiber-reinforced geopolymer composites: a review[J]. Cement and Concrete Composites, 2020, 107: 103498. [20] ZHAO Z G, QU X L, LI Z M, et al. Preparation and characterization of geopolymer foamed concrete based on coal gangue and slag[J]. Construction and Building Materials, 2024, 455: 139187. [21] DAVIDOVITS J. Mineral polymers and methods of making them: US4349386[P]. 1982-09-14. [22] DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. [23] DAVIDOVITS J. Geopolymer chemistry and applications[M]. Saint Quentin: Geopolymer Institute, 2008. [24] SUN W, ZHANG Y S, LIN W, et al. In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM[J]. Cement and Concrete Research, 2004, 34(6): 935-940. [25] ZHANG Y S, SUN W, LI Z J. Hydration process of potassium polysialate (K-PSDS) geopolymer cement[J]. Advances in Cement Research, 2005, 17(1): 23-28. [26] 罗新春, 汪长安. 钙含量对偏高岭土/矿渣基地聚合物结构和性能的影响[J]. 硅酸盐学报, 2015, 43(12): 1800-1805. LUO X C, WANG C A. Effect of calcia content on structure and properties of metakaolin/blast furnace slag-based geopolymers[J]. Journal of the Chinese Ceramic Society, 2015, 43(12): 1800-1805 (in Chinese). [27] YANG T, YAO X, ZHANG Z H, et al. Quantification of chloride diffusion in fly ash-slag-based geopolymers by X-ray fluorescence (XRF)[J]. Construction and Building Materials, 2014, 69: 109-115. [28] 刘志勇, 蒋金洋, 李 洋, 等. 聚丙烯酸乳液改性碱激发矿渣修补材料的力学耐久性能和作用机理[J]. 硅酸盐学报, 2024, 52(2): 498-512. LIU Z Y, JIANG J Y, LI Y, et al. Mechanism and mechanical durability of polyacrylic acid modified alkali-activated slag repair materials[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 498-512 (in Chinese). [29] 潘 晔, 卢子臣, 杨晓杰, 等. 水玻璃种类对聚合物改性碱激发矿渣性能的影响[J]. 建筑材料学报, 2024, 27(6): 536-542. PAN Y, LU Z C, YANG X J, et al. Effect of different water glass on properties of polymer modified slag[J]. Journal of Building Materials, 2024, 27(6): 536-542 (in Chinese). [30] 李化建. 煤矸石质硅铝基材料胶凝机理的研究[J]. 材料导报, 2007, 21(9): 91. LI H J. Study on gelation mechanism of coal gangue silica-based materials[J]. Materials Review, 2007, 21(9): 91 (in Chinese). [31] 冯 凯, 张耀君, 贺攀阳, 等. 酸激发锌渣/偏高岭土地质聚合物的制备及催化性能[J]. 硅酸盐学报, 2021, 49(10): 2061-2069. FENG K, ZHANG Y J, HE P Y, et al. Preparation and catalytic properties of acid-activated zinc slag/metakaolin geopolymers[J]. Journal of the Chinese Silicate, 2019, 49(10): 2061-2069 (in Chinese). [32] LOUATI S, BAKLOUTI S, SAMET B. Acid based geopolymerization kinetics: effect of clay particle size[J]. Applied Clay Science, 2016, 132: 571-578. [33] 党永发, 李晓光. 酸激发提高钢渣、矿渣复合粉水硬活性的研究[J]. 中国粉体技术, 2006, 12(5): 16-18. DANG Y F, LI X G. Improvement of cementitous activation of composite powder made of steel slag and furnace slag with acid[J]. China Powder Science and Technology, 2006, 12(5): 16-18 (in Chinese). [34] 曹德光, 苏达根, 路 波, 等. 偏高岭石-磷酸基矿物键合材料的制备与结构特征(英文)[J]. 硅酸盐学报, 2005, 33(11): 87-91. CAO D G, SU D G, LU B, et al. Synthesis and structure characterization of geopolymeric material based on metakaolinite and phosphoric acid[J]. Journal of the Chinese Ceramic Society, 2005, 33(11): 1385-1389. [35] 刘乐平. 磷酸基地质聚合物的反应机理与应用研究[D]. 南宁: 广西大学, 2012. LIU L P. Study on reaction mechanism and application of phosphate base polymer[D]. Nanning: Guangxi University, 2012 (in Chinese). [36] 何 流, 马 雪, 李良锋, 等. Al2O3·nSiO2-mH3PO4磷酸基地质聚合物的制备与结构表征[J]. 人工晶体学报, 2018, 47(12): 2527-2533. HE L, MA X, LI L F, et al. Preparation and structural characterization of Al2O3·nSiO2-mH3PO4 phosphoric acid-based geopolymer[J]. Journal of Synthetic Crystals, 2018, 47(12): 2527-2533 (in Chinese). [37] ZRIBI M, BAKLOUTI S. Investigation of phosphate based geopolymers formation mechanism[J]. Journal of Non-Crystalline Solids, 2021, 562: 120777. [38] DASSEKPO J M, ZHA X X, ZHAN J P. Compressive strength performance of geopolymer paste derived from completely decomposed granite (CDG) and partial fly ash replacement[J]. Construction and Building Materials, 2017, 138: 195-203. [39] ZAWRAH M F, FARAG R S, KOHAIL M H. Improvement of physical and mechanical properties of geopolymer through addition of zircon[J]. Materials Chemistry and Physics, 2018, 217: 90-97. [40] BAYIHA B N, BILLONG N, YAMB E, et al. Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite[J]. Construction and Building Materials, 2019, 217: 28-35. [41] 李召峰, 陈经棚, 杨 磊, 等. 石粉对赤泥基注浆材料的影响机制[J]. 工程科学学报, 2021, 43(6): 768-777. LI Z F, CHEN J P, YANG L, et al. Influence mechanism of limestone powder on red mud-based grouting material[J]. Chinese Journal of Engineering, 2021, 43(6): 768-777 (in Chinese). [42] 解邦龙, 张吾渝, 孙翔龙, 等. 基于微观定量分析的粉煤灰地聚物性能研究[J]. 青海大学学报, 2021, 39(5): 77-84. XIE B L, ZHANG W Y, SUN X L, et al. Study on the properties of fly ash geopolymer based on microscopic quantitative analysis[J]. Journal of Qinghai University, 2021, 39(5): 77-84 (in Chinese). [43] 王 波, 文 华. 矿渣: 粉煤灰地聚物注浆材料的制备及性能优化研究[J]. 金属矿山, 2023(3): 274-278. WANG B, WEN H. Research on preparation and performance optimization of slag-fly ash geopolymer grouting material[J]. Metal Mine, 2023(3): 274-278 (in Chinese). [44] 王倩倩. 矿渣-粉煤灰地聚物基本性能及流变性能研究[D]. 阜新: 辽宁工程技术大学, 2023. WANG Q Q. Study on basic properties and rheological properties of slag-fly ash terpolymer[D]. Fuxin: Liaoning Technical University, 2023 (in Chinese). [45] 周 梅, 白金婷, 郭凌志, 等. 基于响应曲面法的煤矸石地聚物注浆材料配比优化[J]. 材料导报, 2023, 37(20): 123-131. ZHOU M, BAI J T, GUO L Z, et al. Optimization of grouting material proportion of coal gangue geopolymer based on response surface methodology[J]. Materials Reports, 2023, 37(20): 123-131 (in Chinese). [46] 董冠男, 黄哲骁. 不同掺量硅灰的地聚物注浆材料抗冻性研究[J]. 交通节能与环保, 2024, 20(3): 144-147. DONG G N, HUANG Z X. Study on freeze-thaw resistance of polymer mortar with different proportion of silica fume[J]. Transport Energy Conservation & Environmental Protection, 2024, 20(3): 144-147 (in Chinese). [47] 王家全, 孟廷宇, 畅振超, 等. 赤泥取代率对三元全固废地聚物性能的影响[J/OL]. 复合材料学报, 2024: 1-13 (2024-10-22) [2025-01-12]. https://doi.org/10.13801/j.cnki.fhclxb.20241021.005. WANG J Q, MENG T Y, CHANG Z C, et al. Effect of red mud substitution rate on properties of ternary solid waste geopolymer[J/OL]. China Industrial Economics, 2024: 1-13 (2024-10-22) [2025-01-12]. https://doi.org/10.13801/j.cnki.fhclxb.20241021.005 (in Chinese). [48] 曹辉林. 减水剂类型对赤泥-矿渣基地聚物注浆材料性能的影响及机理研究[J]. 金属矿山, 2022(2): 231-236. CAO H L. Research on the effect and mechanism of water reducer type on the properties of red mud-blast furnace slsg based geopolymer grouting material[J]. Metal Mine, 2022(2): 231-236 (in Chinese). [49] 冯 涵, 张学民, 欧雪峰, 等. 破碎岩体快速注浆加固地聚合物注浆材料试验研究[J]. 华南理工大学学报(自然科学版), 2020, 48(9): 43-50. FENG H, ZHANG X M, OU X F, et al. Experimental study on geopolymer grouting materials reinforced by rapid grouting of fractured rock mass[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(9): 43-50 (in Chinese). [50] 郭凌志, 周 梅, 王丽娟, 等. 煤基固废地聚物注浆材料的制备及性能[J]. 建筑材料学报, 2022, 25(10): 1092-1100. GUO L Z, ZHOU M, WANG L J, et al. Preparation and properties of coal-based solid waste geopolymer grouting materials[J]. Journal of Building Materials, 2022, 25(10): 1092-1100 (in Chinese). [51] BILIR T, AYGÖRMEZ Y, BASTAN Z, et al. Unraveling the characteristics of geopolymer mortars: a deep dive into the impact of marble powder as fine aggregate and varied activators[J]. Construction and Building Materials, 2024, 422: 135767. [52] OKOYE F N, PRAKASH S, SINGH N B. Durability of fly ash based geopolymer concrete in the presence of silica fume[J]. Journal of Cleaner Production, 2017, 149: 1062-1067. [53] BAČAREVIĆ Z, KOMLJENOVIĆ M, MILADINOVIĆ Z, et al. Impact of sodium sulfate solution on mechanical properties and structure of fly ash based geopolymers[J]. Materials and Structures, 2015, 48(3): 683-697. [54] 张森龙, 刘杰胜, 张一迪, 等. 偏高岭土基地聚合物透水混凝土配合比优化设计[J]. 宁德师范学院学报(自然科学版), 2024, 36(3): 308-317. ZHANG S L, LIU J S, ZHANG Y D, et al. Optimization design of permeable concrete mix proportions with metakaolin-based geopolymer[J]. Journal of Ningde Normal University (Natural Science), 2024, 36(3): 308-317 (in Chinese). [55] 陈士军, 龚木联, 刘溯逸, 等. 基于响应曲面法的三元地聚合物注浆材料耐久性能研究[J]. 硅酸盐通报, 2024, 43(3): 938-947. CHEN S J, GONG M L, LIU S Y, et al. Durability of ternary geopolymer grouting materials based on response surface methodology[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 938-947 (in Chinese). [56] 葛振兴. 基于神经网络算法的单部地质聚合物水泥性能预测与分析[D]. 北京: 中国石油大学(北京), 2023. GE Z X. Prediction and analysis of properties of single geopolymer cement based on neural network algorithm[D]. Beijing: China University of Petroleum (Beijing), 2023 (in Chinese). [57] BAI M, ZHANG Z, CAO K, et al. Prediction of compressive strength of fly ash-slag based geopolymer paste based on multi-optimized artificial neural network[J]. Materials (Basel), 2023, 16(3): 1090. [58] ISMAIL I, BERNAL S A, PROVIS J L, et al. Drying-induced changes in the structure of alkali-activated pastes[J]. Journal of Materials Science, 2013, 48(9): 3566-3577. [59] PAN Z, SANJAYAN J G, RANGAN B V. Fracture properties of geopolymer paste and concrete[J]. Magazine of Concrete Research, 2011, 63(10): 763-771. [60] 郭跃飞, 王观次, 尹鸿达, 等. 纤维增强地质聚合物复合材料性能研究进展[J]. 市政技术, 2022, 40(4): 89-94. GUO Y F, WANG G C, YIN H D, et al. Research on properties of fiber-reinforced geopolymer composites[J]. Journal of Municipal Technology, 2022, 40(4): 89-94 (in Chinese). [61] 顾亚敏, 方永浩. 碱矿渣水泥的收缩与开裂特性及其减缩与增韧[J]. 硅酸盐学报, 2012, 40(1): 76-84. GU Y M, FANG Y H. Shrinkage, cracking, shrinkage-reducing and toughening of alkali-activated slag cement: a short review[J]. Journal of the Chinese Ceramic Society, 2012, 40(1): 76-84 (in Chinese). [62] GHOLAMPOUR A, HO V D, OZBAKKALOGLU T. Ambient-cured geopolymer mortars prepared with waste-based sands: mechanical and durability-related properties and microstructure[J]. Composites Part B: Engineering, 2019, 160: 519-534. [63] RILL E, LOWRY D R, KRIVEN W M. Properties of basalt fiber reinforced geopolymer composites[J]. Strategic Materials and Computational Design: Ceramic Engineering and Science Proceedings, 2010, 31: 57-67. [64] DING Z, LU C, CUI P, et al. Primal study on mechanical properties of phosphate based geopolymer[J]. Key Engineering Materials, 2017, 726: 490-494. [65] 李 慷. 牛粪纤维增强碱激发胶凝材料性能研究[D]. 福州: 福州大学, 2022. LI K. Study on properties of cow dung fiber reinforced alkali-activated cementitious materials[D]. Fuzhou: Fuzhou University, 2022 (in Chinese). [66] FURTOS G, PRODAN D, SAROSI C, et al. Mechanical properties of MiniBarsTM basalt fiber-reinforced geopolymer composites[J]. Materials, 2024, 17(1): 248. [67] OZCELIKCI E, OZDOGRU E, TUGLUCA M S, et al. Comprehensive investigation of performance of construction and demolition waste based wood fiber reinforced geopolymer composites[J]. Journal of Building Engineering, 2024, 84: 108682. [68] 张全超, 黄大建, 张小鹏, 等. 高掺量硅灰石纤维对偏高岭土基地聚物性能和微结构的影响[J]. 复合材料学报, 2023, 40(8): 4694-4702. ZHANG Q C, HUANG D J, ZHANG X P, et al. Effect of high wollastonite fiber incorporation on metakaolin base geopolymers’ properties and microstructure[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4694-4702 (in Chinese). [69] 柴 倩, 张耀君. 水镁石纤维增韧炉底渣基地质聚合物的制备和增韧机理[J]. 硅酸盐通报, 2018, 37(11): 3392-3397. CHAI Q, ZHANG Y J. Preparation and toughening mechanism of bottom ash-based geopolymer reinforced by brucite fiber[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3392-3397 (in Chinese). [70] RAZA A, AHMED B, EL OUNI M H, et al. Microstructural and thermal characterization of polyethylene fiber-reinforced geopolymer composites[J]. Journal of Building Engineering, 2024, 94: 109904. [71] RAZA A, AHMED B, EL OUNI M H, et al. Mechanical, durability and microstructural characterization of cost-effective polyethylene fiber-reinforced geopolymer concrete[J]. Construction and Building Materials, 2024, 432: 136661. [72] BAYKARA H, CORNEJO M H, ESPINOZA A, et al. Preparation, characterization, and evaluation of compressive strength of polypropylene fiber reinforced geopolymer mortars[J]. Heliyon, 2020, 6(4): e03755. [73] 宋学锋, 王 骏, 王 艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性[J]. 材料导报, 2017, 31(22): 121-124+145. SONG X F, WANG J, WANG Y. Flexural strength and flexural toughness of fiber/hybrid fibers and slag-geopolymers composites[J]. Materials Review, 2017, 31(22): 121-124+145 (in Chinese). [74] RIBEIRO M G S, MIRANDA I P A, KRIVEN W M, et al. High strength and low water absorption of bamboo fiber-reinforced geopolymer composites[J]. Construction and Building Materials, 2024, 411: 134179. [75] ABBAS A G N, NORA AZNIETA ABDUL AZIZ F, ABDAN K, et al. Experimental study on durability properties of kenaf fibre-reinforced geopolymer concrete[J]. Construction and Building Materials, 2023, 396: 132160. [76] 任 瑞, 黎亦丹, 徐 方, 等. 地聚合物隧道注浆材料性能与应用研究[J]. 新型建筑材料, 2018, 45(3): 118-121. REN R, LI Y D, XU F, et al. Performance and application study of geopolymer as tunnel grouting material[J]. New Building Materials, 2018, 45(3): 118-121 (in Chinese). [77] 谢槟槟. 碱激发赤泥-粉煤灰二元体系地聚合物双液浆材料特性研究[D]. 抚州: 东华理工大学, 2022. XIE B B. Study on the material properties of alkaline excited red mud and fly ash dual-system polymer double slurry[D]. Fuzhou: East China Institute of Technology, 2022 (in Chinese). [78] 陈成宇, 曹 恒, 卢志杰, 等. 极破碎裂隙泥岩巷道地质聚合物注浆加固力学性能试验研究及应用[J]. 煤炭技术, 2021, 40(12): 37-40. CHEN C Y, CAO H, LU Z J, et al. Experimental study on mechanical properties of geopolymer grouting reinforcement for extremely broken mudstone roadway and its application[J]. Coal Technology, 2021, 40(12): 37-40 (in Chinese). [79] 王洪波, 张庆松, 刘人太, 等. 不良地质动水封堵加固材料试验及工艺研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3984-3991. WANG H B, ZHANG Q S, LIU R T, et al. Experimental study on dynamic water plugging and reinforcement materials in bad geology and its technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(supplement 2): 3984-3991 (in Chinese). [80] 柴 涛, 刘 鹏. 一种新型地聚合物胶料制备与路基溶洞充填应用技术[J]. 粘接, 2023, 50(4): 100-104. CHAI T, LIU P. Preparation of a novel type of geopolymer compound and its application technology on filling subgrade cave[J]. Adhesion, 2023, 50(4): 100-104 (in Chinese). [81] 谭 弘, 孙林柱. 地质聚合物的应用研究进展[J]. 云南化工, 2023, 50(6): 1-3. TAN H, SUN L Z. Research progress in the application of geopolymers[J]. Yunnan Chemical Technology, 2023, 50(6): 1-3 (in Chinese). [82] 高昊鹏, 朱苦竹. 地聚物砂浆在道路加固中的应用与研究[J]. 粉煤灰综合利用, 2019, 33(6): 89-92. GAO H P, ZHU K Z. Application and research on geopolymer mortar in road reinforcement[J]. Fly Ash Comprehensive Utilization, 2019, 33(6): 89-92 (in Chinese). [83] 林有贵, 栗 晖, 易 强, 等. 在役沥青路面基层地聚物注浆补强技术研究[J]. 中外公路, 2020, 40(2): 46-52. LIN Y G, LI H, YI Q, et al. Research on reinforcement technology of existing asphalt pavement subbase using geopolymer grouting[J]. Journal of China & Foreign Highway, 2020, 40(2): 46-52 (in Chinese). [84] 李 款, 潘友强, 解建光, 等. 粉煤灰基地质聚合物注浆材料的性能研究及工程应用[J]. 新型建筑材料, 2021, 48(1): 57-63. LI K, PAN Y Q, XIE J G, et al. Performance research and engineering application of FA-based geopolymer grouting materials[J]. New Building Materials, 2021, 48(1): 57-63 (in Chinese). [85] 步玉环, 赵乐天, 王春雨. 基于地质聚合物原理实现泥饼固化的固井质量改善方法[J]. 钻井液与完井液, 2017, 34(1): 96-100. BU Y H, ZHAO L T, WANG C Y. A solution to the improvement of the quality of cement sheath-formation bonding based on geopolymer theory[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 96-100 (in Chinese). [86] 刘鑫军. 道路修复和油井固泥用地聚物材料的制备与性能研究[D]. 广州: 华南理工大学, 2021. LIU X J. Study on preparation and properties of polymer materials for road repair and oil well mud land[D]. Guangzhou: South China University of Technology, 2021 (in Chinese). [87] 杨雁惠. 地质聚合物阻截墙对地下污染源的阻截研究[D]. 长春: 吉林大学, 2020. YANG Y H. Study on the interception of underground pollution sources by geopolymer interception wall[D]. Changchun: Jilin University, 2020 (in Chinese). |
| [1] | ZHU Yiyang, GENG Haining, LI Zonggang, MA Haosen, LUO Yang, CHEN Wei, LI Qiu. Preparation and Fireproof Performance of Geopolymer Lightweight Fire Resistant Coating [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 3049-3060. |
| [2] | LIAO Xu, WANG Tao, JIANG Chuanfu, HE Yan, CUI Xuemin. Synthesis of Organic Soil by Geopolymer Solid Waste and Surgarcane Waste Residue Synergistic Dealkalization Red Mud [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2900-2911. |
| [3] | HU Jianlin, LI Zhilin, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Mechanical Properties of Quicklime-Activated Ground Blast Furnace Slag-Fly Ash Geopolymer-Stabilized Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2912-2923. |
| [4] | ZHANG Zongyang, SHAMA Shibu, LUO Qi, LU Liulei, YE Weikai, SHENG Guodong, ZHANG Feng, DONG Faxin, LIU Mingwang, WANG Junfeng. Effect of Activator on Rheological and Mechanical Properties of One-Part Lithium Slag-Based Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2538-2548. |
| [5] | YUAN Hong, YANG Min, CAI Tingya, PAN Rongxiang. Effect of Retarder on Performance of Slag-Red Mud Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2589-2596. |
| [6] | JIANG Heng, CHAI Hucheng, LIU Erceng, ZHANG Haibo, SONG Changsheng, GONG Zhili. Effect of In-Situ Polymerization on Properties ofCement-Based Grouting Reinforcement Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2149-2158. |
| [7] | CUI Chao, LUO Chenguang, TAI Wenyu, WANG Lan, PENG Hui. Effect of Active Si/Al Ratios on Geopolymerization Reaction and Compressive Strength of Metakaolin-Based Geopolymers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2181-2192. |
| [8] | YUE Hongya, YUAN Yangjun, BI Yufeng, JI Zekun, XU Run, CHEN Wenxu, XIN Gongfeng, YANG Tao. Shrinkage Performance and Pore Structure of Nickel Slag-Ground Granulated Blast Furnace Slag Binary System Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2233-2239. |
| [9] | LUO Zhanpeng, XIONG Chunlin, HAN Zejun, WANG Shengxin, LIU Kaihua. Mechanical Properties and Solidification Mechanism of Slag-Fly Ash-Glass Powder Composite Solidified Shield Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1803-1812. |
| [10] | WEI Xianhua, WANG Delin, LI Chao, ZHONG Haijun, GUO Longlong. Effect of Fly Ash-Based Geopolymer and Water Content on Mechanical Properties of Solidified Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1949-1956. |
| [11] | REN Caifu, WANG Dongmin, FANG Kuizhen, WANG Jixiang, ZHANG Xinlong, CHEN Wei. Properties and Hardening Mechanism of Solid Waste Based Grouting Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1328-1336. |
| [12] | GAO Yingli, XIONG Haoyu, FENG Xinling, ZHU Juncai, ZHAO Fuyi. Composition Design and Fiber Influence Effects of Hybrid Fiber One-Part Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1357-1366. |
| [13] | WEN Xiaoyun, TONG Xiong, SHANG Jiangtao, CHE Yuan, CHEN Kezhen, XIE Xian, FAN Peiqiang. Progress on Application and Mechanical Properties of Phosphogypsum Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 953-969. |
| [14] | ZHANG Xuming, WANG Weiqiang, ZHANG Fengdi, ZOU Xinwei. Preparation of Desulfurizer from Red Mud and Its Desulfurization Mechanism [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 1001-1010. |
| [15] | LI Chao, LI Zhikang, LI Xinyu, HUANG Yongliang, WANG Wu, LUO Zhengdong, LI Wenjia, XU Fu. Review on Factors Affecting Setting and Hardening Characteristics of Geopolymers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 501-514. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||