[1] 张建国, 邱黎明, 王 满, 等. 深部煤层不同类型隐伏构造致灾规律研究[J]. 煤炭科学技术, 2023, 51(增刊2): 50-59. ZHANG J G, QIU L M, WANG M, et al. Study on disaster-causing law of different types of hidden structures in deep coal seam[J]. Coal Science and Technology, 2023, 51(supplement 2): 50-59 (in Chinese). [2] 孙文斌, 薛延东, 杨 辉, 等. 工作面回采对断层裂隙带应力扰动规律及注浆加固机制研究[J]. 岩石力学与工程学报, 2023, 42(11): 2668-2681. SUN W B, XUE Y D, YANG H, et al. Study on the law of stress disturbance in fault fissure zones caused by mining face and the mechanism of grouting reinforcement[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(11): 2668-2681 (in Chinese). [3] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. XIE H P. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305 (in Chinese). [4] 康红普. 煤矿巷道支护与加固材料的发展及展望[J]. 煤炭科学技术, 2021, 49(4): 1-11. KANG H P. Development and prospects of support and reinforcement materials for coal mine roadways[J]. Coal Science and Technology, 2021, 49(4): 1-11 (in Chinese). [5] 张海波, 狄红丰, 刘庆波, 等. 微纳米无机注浆材料研发与应用[J]. 煤炭学报, 2020, 45(3): 949-955. ZHANG H B, DI H F, LIU Q B, et al. Research and application of micro-nano inorganic grouting materials[J]. Journal of China Coal Society, 2020, 45(3): 949-955 (in Chinese). [6] 管学茂, 李雪峰, 张海波, 等. 深井软岩无机有机复合注浆加固材料研发与应用[J]. 煤炭科学技术, 2023, 51(8): 1-11. GUAN X M, LI X F, ZHANG H B, et al. Research and application of inorganic and organic composite grouting reinforcement materials in deep weak rock[J]. Coal Science and Technology, 2023, 51(8): 1-11 (in Chinese). [7] WANG J. Effect of different lime-anhydrite ratios on the hydration process of sulfoaluminate cement[J]. Journal of Materials in Civil Engineering, 2022: 34(10): 04022242. [8] 周 蓉, 王继茹, 张海波. 聚合物改性水泥基材料研究进展[J]. 化工新型材料, 2021, 49(12): 275-279. ZHOU R, WANG J R, ZHANG H B. Research development on polymer modified cement based material[J]. New Chemical Materials, 2021, 49(12): 275-279 (in Chinese). [9] ABDULRAHMAN P I, BZENI D K. Bond strength evaluation of polymer modified cement mortar incorporated with polypropylene fibers[J]. Case Studies in Construction Materials, 2022, 17: e01387. [10] YANG L Y, HUANG Y. Microstructure and mechanism of polymer cement[J]. Integrated Ferroelectrics, 2021, 215(1): 24-37. [11] WANG Y X, LIU Q S. Investigation on fundamental properties and chemical characterization of water-soluble epoxy resin modified cement grout[J]. Construction and Building Materials, 2021, 299: 123877. [12] ZHANG H B, ZHOU R, LIU S H, et al. Enhanced toughness of ultra-fine sulphoaluminate cement-based hybrid grouting materials by incorporating in situ polymerization of acrylamide[J]. Construction and Building Materials, 2021, 292: 123421. [13] CHEN B M, QIAO G, HOU D S, et al. Cement-based material modified by in situ polymerization: from experiments to molecular dynamics investigation[J]. Composites Part B: Engineering, 2020, 194: 108036. [14] ZHANG H B, YAO S W, WANG J R, et al. Tensile properties of sulfoaluminate cement-based grouting materials toughened by in situ polymerization of acrylamide[J]. Construction and Building Materials, 2023, 375: 130885. [15] WANG J R, ZHANG H B, ZHU Y, et al. Acrylamide in situ polymerization of toughened sulphoaluminate cement-based grouting materials[J]. Construction and Building Materials, 2022, 319: 126105. [16] LIU Q, LIU R J, WANG Q, et al. Cement mortar with enhanced flexural strength and durability-related properties using in situ polymerized interpenetration network[J]. Frontiers of Structural and Civil Engineering, 2021, 15(1): 99-108. [17] 王子明, 蔡扬扬, 张 琳. 互穿网络结构水泥基复合材料的性能和机理研究[J]. 混凝土, 2021(11): 70-74. WANG Z M, CAI Y Y, ZHANG L. Study on properties and mechanism of interpenetrating network structure cementitious composites[J]. Concrete, 2021(11): 70-74 (in Chinese). [18] 鲍文博, 李 维, 底高浩, 等. 一种环保延性水泥基复合材料的制备及其韧性[J]. 材料研究学报, 2018, 32(12): 905-912. BAO W B, LI W, DI G H, et al. Preparation and ductility characterization of an environmental friendly toughening cementitious composite[J]. Chinese Journal of Materials Research, 2018, 32(12): 905-912 (in Chinese). [19] ZHANG H B, ZHANG X T, GUO Z Y, et al. Optimization of the injection and physical properties of sulfoaluminate cement via the in situ polymerization of acrylamide[J]. Buildings, 2022, 12(12): 2237. [20] LIN S T, NI J H, ZHENG D C, et al. Fracture and fatigue of ideal polymer networks[J]. Extreme Mechanics Letters, 2021, 48: 101399. [21] LIU Q, LIU W J, LI Z J, et al. Ultra-lightweight cement composites with excellent flexural strength, thermal insulation and water resistance achieved by establishing interpenetrating network[J]. Construction and Building Materials, 2020, 250: 118923. [22] CHAI H C, LIU S H, ZHAO L Y, et al. Enhancing sulfate resistance of sulfate-aluminate cement grouting material through acrylamide in situ polymerization modification[J]. Construction and Building Materials, 2023, 408: 133799. [23] 梁化磊, 韩晓龙, 陈新明, 等. 聚合物水泥浆液-煤体界面过渡区力学性能研究[J]. 煤矿安全, 2021, 52(9): 71-77. LIANG H L, HAN X L, CHEN X M, et al. Study on mechanical properties of polymer cement slurry-coal interface transition zone[J]. Safety in Coal Mines, 2021, 52(9): 71-77 (in Chinese). [24] LIANG R, LIU Q, HOU D S, et al. Flexural strength enhancement of cement paste through monomer incorporation and in situ bond formation[J]. Cement and Concrete Research, 2022, 152: 106675. [25] PAN C, LIU S H, YAO S W, et al. Influence of acrylamide in situ polymerization on the mechanical properties and microstructure of OPC-CSA-Cs-FA quaternary system[J]. Journal of Building Engineering, 2023, 67: 105906. [26] LIU Q, LU Z Y, LIANG X X, et al. High flexural strength and durability of concrete reinforced by in situ polymerization of acrylic acid and 1-acrylanmido-2-methylpropanesulfonic acid[J]. Construction and Building Materials, 2021, 292: 123428. |