[1] HUNG C C, LEE H S, CHAN S N. Tension-stiffening effect in steel-reinforced UHPC composites: constitutive model and effects of steel fibers, loading patterns, and rebar sizes[J]. Composites Part B: Engineering, 2019, 158: 269-278. [2] WEI B Y, HE X J, WU W W, et al. Research on the flexural behavior of polypropylene fiber reinforced concrete beams with hybrid reinforcement of GFRP and steel bars[J]. Materials and Structures, 2024, 57(4): 66. [3] QIN Y, ZHANG X W, CHAI J R, et al. Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete[J]. Construction and Building Materials, 2019, 194: 216-225. [4] WANG D H, JU Y Z, SHEN H, et al. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials, 2019, 197: 464-473. [5] DE SOUZA CASTOLDI R, DE SOUZA L M S, DE ANDRADE SILVA F. Comparative study on the mechanical behavior and durability of polypropylene and sisal fiber reinforced concretes[J]. Construction and Building Materials, 2019, 211: 617-628. [6] 漆贵海, 彭小芹, 叶浩文, 等. 聚丙烯纤维对超高强混凝土断裂特性的影响[J]. 建筑材料学报, 2015, 18(3): 487-492. QI G H, PENG X Q, YE H W, et al. Effects of polypropylene fibres on fracture energy properties of ultra high strength concrete[J]. Journal of Building Materials, 2015, 18(3): 487-492 (in Chinese). [7] 郑思铭, 李 蔚, 杨函瑞, 等. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 256-265. ZHENG S M, LI W, YANG H R, et al. Research progress in the modification and applications of 3D printed polylactic acid[J]. Materials Reports, 2024, 38(8): 256-265 (in Chinese). [8] SANTANA H A, AMORIM N S, RIBEIRO D V, et al. 3D printed mesh reinforced geopolymer: notched prism bending[J]. Cement and Concrete Composites, 2021, 116: 103892. [9] MAQSOOD N, RIMAŠAUSKAS M. Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling[J]. Composites Part C: Open Access, 2021, 4: 100112. [10] DONG P, DING W J, YUAN H Y, et al. 3D-printed polymeric lattice-enhanced sustainable municipal solid waste incineration fly ash alkali-activated cementitious composites[J]. Developments in the Built Environment, 2022, 12: 100101. [11] BEHNIA A, CHAI H K, SHIOTANI T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission[J]. Construction and Building Materials, 2014, 65: 282-302. [12] GENG J S, SUN Q, ZHANG Y C, et al. Studying the dynamic damage failure of concrete based on acoustic emission[J]. Construction and Building Materials, 2017, 149: 9-16. [13] 朱德滨. 基于声发射技术的高韧性水泥基复合材料开裂损伤特性[J]. 武汉理工大学学报, 2012, 34(7): 94-97+123. ZHU D B. Study on the fracture damage characteristic of high toughness cementitious composite with acoustic emission technique[J]. Journal of Wuhan University of Technology, 2012, 34(7): 94-97+123 (in Chinese). [14] 卜静武, 徐慧颖, 羌宇杰, 等. 橡胶混凝土轴拉破坏过程中声发射特性[J]. 建筑科学与工程学报, 2022, 39(2): 78-86. BU J W, XU H Y, QIANG Y J, et al. Acoustic emission characteristics of rubber concrete in axial tension process[J]. Journal of Architecture and Civil Engineering, 2022, 39(2): 78-86 (in Chinese). [15] FARNAM Y, GEIKER M R, BENTZ D, et al. Acoustic emission waveform characterization of crack origin and mode in fractured and ASR damaged concrete[J]. Cement and Concrete Composites, 2015, 60: 135-145. [16] OHNO K, OHTSU M. Crack classification in concrete based on acoustic emission[J]. Construction and Building Materials, 2010, 24(12): 2339-2346. [17] 胡浩聪, 刘娟红, 王金安. 纤维增强混凝土韧性及声发射特征分析[J]. 煤炭学报, 2023, 48(3): 1209-1219. HU H C, LIU J H, WANG J A. Toughness test and acoustic emission characteristics analysis of fiber reinforced concrete[J]. Journal of China Coal Society, 2023, 48(3): 1209-1219 (in Chinese). [18] 白金超, 成云海, 郑强强, 等. 干、湿喷混凝土受载力学特性及破坏机制[J]. 煤炭学报, 2020, 45(8): 2777-2786. BAI J C, CHENG Y H, ZHENG Q Q, et al. Mechanical characteristics and failure mechanism of dry and wet shotcrete under loading[J]. Journal of China Coal Society, 2020, 45(8): 2777-2786 (in Chinese). |