[1] 李嘉豪, 习明星, 沈 奕, 等. 基于SimaPro的公路隧道建造阶段碳排放计算与构成评估[J]. 现代隧道技术, 2023, 60(6): 20-28. LI J H, XI M X, SHEN Y, et al. Calculation and composition assessment of the carbon emission in the construction phase of highway tunnels based on SimaPro[J]. Modern Tunnelling Technology, 2023, 60(6): 20-28 (in Chinese). [2] WANG W H, YE M H, SHI Y F, et al. Plant-level intensity of energy and CO2 emissions for Portland cement in Guizhou of Southwest China 2019—2022[J]. Scientific Data, 2024, 11(1): 759. [3] 李 强, 郝爱玲, 沈应波. 传统木结构建筑火灾蔓延特性试验研究[J]. 消防科学与技术, 2023, 42(6): 773-778+784. LI Q, HAO A L, SHEN Y B. Experimental study on fire spread characteristics of traditional timber structure buildings[J]. Fire Science and Technology, 2023, 42(6): 773-778+784 (in Chinese). [4] MVONDO R R N, MEUKAM P, JEONG J, et al. Influence of water content on the mechanical and chemical properties of tropical wood species[J]. Results in Physics, 2017, 7: 2096-2103. [5] RAMLI R A. A comprehensive review on utilization of waste materials in wood plastic composite[J]. Materials Today Sustainability, 2024, 27: 100889. [6] 李广东. 全球土地覆被时空变化与中国贡献[J]. 地理学报, 2022, 77(2): 353-368. LI G D. Spatio-temporal change of global land cover and China’s contribution[J]. Acta Geographica Sinica, 2022, 77(2): 353-368 (in Chinese). [7] MENG M W, HONG W. Mathematical model for the formaldehyde emission from wood composites[J]. Forest Products Journal, 2017, 67(1/2): 126-134. [8] GONG Y C, LIU R J, YAO L H, et al. Innovation analysis of carbon emissions from the production of glued laminated timber in China based on real-time monitoring data[J]. Journal of Cleaner Production, 2024, 469: 143174. [9] HUANG Y F, JIN T, ZENG H Y, et al. Development of novel sustainable hyperbranched polyester wood adhesives from glycerol and maleic anhydride by solvent free method[J]. Industrial Crops and Products, 2023, 204: 117326. [10] QIU H, ZHU Y C, DING X M, et al. Study on the activating effects of biochar composites on formaldehyde[J]. Composites and Advanced Materials, 2021, 30: 1603328646. [11] LI C J, CHEN H N, ZHANG H G, et al. Mechanical properties of magnesium-based wood-like material subjected to splitting tensile tests[J]. Case Studies in Construction Materials, 2024, 20: e02955. [12] 张敬文. 工业废渣在水泥建材中综合利用的价值研究[J]. 房地产世界, 2024(11): 161-163. ZHANG J W. Study on the value of comprehensive utilization of industrial waste residue in cement building materials[J]. Real Estate World, 2024(11): 161-163 (in Chinese). [13] 李 薇. 绿色建筑材料在工业建筑中的应用[J]. 建材发展导向, 2024, 22(16): 1-3. LI W. Application of green building materials in industrial buildings[J]. Development Guide to Building Materials, 2024, 22(16): 1-3 (in Chinese). [14] HE P P, POON C S, TSANG D C W. Water resistance of magnesium oxychloride cement wood board with the incorporation of supplementary cementitious materials[J]. Construction and Building Materials, 2020, 255: 119145. [15] 马超良. 氯氧镁水泥植物纤维墙板工艺改进与新产品开发[J]. 建材工业信息, 2005(1): 25-27. MA C L. The technology improvement and new product development of wall sheet made use of Cl-O-Mg cement and vegetal fiber[J]. Brick & Tile World, 2005(1): 25-27 (in Chinese). [16] WANG J, WANG S, ZUO Y F, et al. Construction of compatible interface of straw/magnesium oxychloride lightweight composites by coupling agents[J]. Construction and Building Materials, 2021, 281: 122600. [17] MENG D, UNLUER C, YANG E H, et al. Recent advances in magnesium-based materials: CO2 sequestration and utilization, mechanical properties and environmental impact[J]. Cement and Concrete Composites, 2023, 138: 104983. [18] 王立利, 李东伟. 高强度高韧性氯氧镁水泥基胶凝材料制备[J]. 硅酸盐通报, 2018, 37(12): 3827-3832. WANG L L, LI D W. Preparation of high strength and high toughness magnesium oxychloride cement based cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3827-3832 (in Chinese). [19] 张翠苗, 杨红健, 马学景. 氯氧镁水泥的研究进展[J]. 硅酸盐通报, 2014, 33(1): 117-121. ZHANG C M, YANG H J, MA X J. Research progress of magnesium oxychloride cement[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 117-121 (in Chinese). [20] YANG J J, ZHANG H G, YU T, et al. Constitutive relationships and acoustic emission behavior of plant-fiber/magnesium oxychloride cement composites under uniaxial compressive load[J]. Construction and Building Materials, 2023, 404: 133194. [21] HE H, ZHANG H G, YANG J J, et al. Effect of pressing pressure on the mechanical properties and water resistance of straw/sawdust-magnesium oxychloride cement composite[J]. Construction and Building Materials, 2023, 383: 131362. [22] 王安选, 张华刚, 杨娇娇, 等. 仿木材料抗拉强度与应力-应变曲线试验研究[J]. 贵州大学学报(自然科学版), 2024, 41(2): 110-115. WANG A X, ZHANG H G, YANG J J, et al. Experimental study on the tensile strength and stress-strain curve of imitation wood material[J]. Journal of Guizhou University (Natural Sciences), 2024, 41(2): 110-115 (in Chinese). [23] 张 鑫, 张华刚, 吴 琴, 等. 类木材料抗剪及抗拉强度的试验研究[J]. 贵州大学学报(自然科学版), 2019, 36(5): 100-105. ZHANG X, ZHANG H G, WU Q, et al. Experimental investigation on shear and splitting tensile strength of similar wood material[J]. Journal of Guizhou University (Natural Sciences), 2019, 36(5): 100-105 (in Chinese). [24] 刘艳君, 张华刚, 吴 琴, 等. 类木材料力学性能的初步试验研究[J]. 贵州大学学报(自然科学版), 2018, 35(4): 106-112+116. LIU Y J, ZHANG H G, WU Q, et al. Preliminary experimental investigation on mechanical properties of similar wood material[J]. Journal of Guizhou University (Natural Sciences), 2018, 35(4): 106-112+116 (in Chinese). [25] LIU Z M, GE X L, LU C R, et al. Research progress on freeze-thaw constitutive model of concrete based on damage mechanics[J]. Science and Engineering of Composite Materials, 2024, 31(1): 20240020. [26] LI B, CHEN Z K, WANG S N, et al. A review on the damage behavior and constitutive model of fiber reinforced concrete at ambient temperature[J]. Construction and Building Materials, 2024, 412: 134919. [27] 宁喜亮, 丁一宁. 钢纤维对混凝土单轴受压损伤本构模型的影响[J]. 建筑材料学报, 2015, 18(2): 214-220. NING X L, DING Y N. Effect of steel fiber on the damage constitutive model of concrete under uniaxial compression[J]. Journal of Building Materials, 2015, 18(2): 214-220 (in Chinese). [28] LENG F, WU G. A thermodynamics-based damage constitutive model of concrete[J]. European Journal of Environmental and Civil Engineering, 2013, 17: s83-s102. [29] BHATTACHARYYA R, BASU P K. Multiscale progressive damage analysis of CFRP composites using a mechanics based constitutive relation[J]. Composite Structures, 2020, 235: 111759. [30] 杨 帆, 张友锋, 余 姚. 加载速率对巷道湿喷混凝土损伤破坏及能耗影响分析[J]. 混凝土, 2023(9): 16-20. YANG F, ZHANG Y F, YU Y. Influence effect of loading rate on damage and energy consumption of wet shotcretein roadway[J]. Concrete, 2023(9): 16-20 (in Chinese). [31] 金子恒, 谢发祥, 蔡定鹏, 等. 不同加载速率下SAP混凝土断裂性能研究[J]. 硅酸盐通报, 2023, 42(10): 3546-3553. JIN Z H, XIE F X, CAI D P, et al. Fracture performance of SAP concrete under different loading rates[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3546-3553 (in Chinese). [32] 王攀峰, 曹玉贵, 邓晓光, 等. 不同应变速率下橡胶混凝土损伤本构模型[J]. 硅酸盐通报, 2022, 41(6): 1912-1919. WANG P F, CAO Y G, DENG X G, et al. Damage constitutive model of rubber concrete under different strain rates[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 1912-1919 (in Chinese). [33] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. State Administration for Marke Regulation. Standard for test methods of concrete physical and mechanical properties[S]. Beijing: China Building Industry Press, 2009 (in Chinese). [34] 王乾峰. 钢纤维混凝土动态损伤特性研究[D]. 宜昌: 三峡大学, 2009. WANG Q F. Study on dynamic damage characteristics of steel fiber reinforced concrete[D]. Yichang: China Three Gorges University, 2009 (in Chinese). [35] LEMAITRE J, SERMAGE J P, DESMORAT R. A two scale damage concept applied to fatigue[J]. International Journal of Fracture, 1999, 97(1): 67-81. |