[1] BU C M, ZHU D X, LIU L, et al. Research progress on rubber concrete properties: a review[J]. Journal of Rubber Research, 2022, 25(2): 105-125. [2] HE S H, JIANG Z, CHEN H W, et al. Mechanical properties, durability, and structural applications of rubber concrete: a state-of-the-art-review[J]. Sustainability, 2023, 15(11): 8541. [3] THOMAS B S, GUPTA R C. Long term behaviour of cement concrete containing discarded tire rubber[J]. Journal of Cleaner Production, 2015, 102: 78-87. [4] 刘保东, 王瑶瑶, 孙海波, 等. 橡胶混凝土覆层桥墩的抗震性能研究[J]. 工程抗震与加固改造, 2021, 43(1): 140-147. LIU B D, WANG Y Y, SUN H B, et al. Study on the energy dissipation of bridge piers using crumb rubber concrete wrapping layer[J]. Earthquake Resistant Engineering and Retrofitting, 2021, 43(1): 140-147 (in Chinese). [5] 袁 群, 冯凌云, 闫治宇, 等. 自然环境高温下橡胶混凝土的强度变化和机理[J]. 混凝土, 2019(12): 29-32+36. YUAN Q, FENG L Y, YAN Z Y, et al. Change and mechanism of the compressive strength of rubber concrete in high temperature of natural environment[J]. Concrete, 2019(12): 29-32+36 (in Chinese). [6] 莫品疆, 马铮铮. 高温后橡胶粉掺量对高强混凝土抗压强度的影响[J]. 混凝土, 2017(2): 80-83. MO P J, MA Z Z. Influence of rubber powder content on compressive strength of high-strength concrete after high temperature[J]. Concrete, 2017(2): 80-83 (in Chinese). [7] 朱 江, 李丽娟, 文周礼, 等. 聚丙烯纤维改性橡胶高强混凝土高温性能研究[J]. 混凝土, 2008(3): 51-54. ZHU J, LI L J, WEN Z L, et al. Research on high temperature property of polypropylene fiber modified high strength rubber concrete[J]. Concrete, 2008(3): 51-54 (in Chinese). [8] 李丽娟, 谢伟锋, 陈智泽, 等. 橡胶粉改性高强混凝土高温前后性能研究[J]. 混凝土, 2007(2): 11-15. LI L J, XIE W F, CHEN Z Z, et al. Research on high temperature property of rubber powder modified high strength concrete[J]. Concrete, 2007(2): 11-15 (in Chinese). [9] 安军林, 于 泳, 金祖权, 等. 橡胶颗粒抑制蒸养混凝土热损伤机制[J]. 复合材料学报, 2023, 40(5): 2960-2971. AN J L, YU Y, JIN Z Q, et al. Mechanism of rubber particles inhibit heat damage of steam-curing concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2960-2971 (in Chinese). [10] 陈卓明, 李丽娟, 熊 哲. 橡胶混凝土胶凝材料改进试验研究[J]. 混凝土与水泥制品, 2019(9): 90-94. CHEN Z M, LI L J, XIONG Z. Experimental study on improvement of rubber concrete cementitious materials[J]. China Concrete and Cement Products, 2019(9): 90-94 (in Chinese). [11] GESOĞLU M, GÜNEYISI E. Strength development and chloride penetration in rubberized concretes with and without silica fume[J]. Materials and Structures, 2007, 40(9): 953-964. [12] DUAN D M, LI F M, GUO Z, et al. Mechanical performance of crumbed rubber concrete subjected to high temperature[J]. Structural Concrete, 2024, 25(5): 3749-3764. [13] BENGAR H A, SHAHMANSOURI A A, SABET N A Z, et al. Impact of elevated temperatures on the structural performance of recycled rubber concrete: experimental and mathematical modeling[J]. Construction and Building Materials, 2020, 255: 119374. [14] ZÁLESKÁ M, PAVLÍK Z, ČÍTEK D, et al. Eco-friendly concrete with scrap-tyre-rubber-based aggregate-properties and thermal stability[J]. Construction and Building Materials, 2019, 225: 709-722. [15] YU Y, JIN Z Q, SHEN D X, et al. Microstructure evolution and impact resistance of crumb rubber concrete after elevated temperatures[J]. Construction and Building Materials, 2023, 384: 131340. [16] 吴栩霆, 王 振, 周 航, 等. 不同冷却方式下高温混凝土的动态力学特性[J/OL]. 爆炸与冲击: 1-17 (2024-09-06)[2024-11-04]. https://kns.cnki.net/kcms/detail/51.1148.o3.20240906.1227.024.html. WU X T, WANG Z, ZHOU H, et al. Study on dynamic mechanical properties of high-temperature concrete under different cooling methods[J/OL]. Explosion and Shock Waves: 1-17 (2024-09-06)[2024-11-04]. https://kns.cnki.net/kcms/detail/51.1148.o3.20240906.1227.024.html (in Chinese). [17] 高丹盈, 陈嘉伟, 王一泓. 高温中纤维纳米改性橡胶混凝土力学性能试验研究[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(增刊1): 65-72. GAO D Y, CHEN J W, WANG Y H. Experimental study on mechanical properties of SFNS-CRC subjected to elevated temperatures[J]. Journal of Tianjin University (Science and Technology), 2018, 51(supplement 1): 65-72 (in Chinese). [18] CHANG Y F, CHEN Y H, SHEU M S, et al. Residual stress-strain relationship for concrete after exposure to high temperatures[J]. Cement and Concrete Research, 2006, 36(10): 1999-2005. [19] 毛振豪, 张继承, 李元齐, 等. 活性粉末混凝土高温后性能劣化及微观结构[J]. 建筑材料学报, 2022, 25(12): 1225-1232. MAO Z H, ZHANG J C, LI Y Q, et al. Performance degradation and microscopic structure of reactive powder concrete after exposure to high temperature[J]. Journal of Building Materials, 2022, 25(12): 1225-1232 (in Chinese). [20] RASHAD A M, BAI Y, BASHEER P A M, et al. Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature[J]. Cement and Concrete Research, 2012, 42(2): 333-343. [21] CHEN J H, LI T, LI X P, et al. Morphological evolution of low-grade silica fume at elevated temperature[J]. High Temperature Materials and Processes, 2017, 36(6): 607-613. [22] HEMMINGS R T, BERRY E E. On the glass in coal fly ashes: recent advances[J]. MRS Online Proceedings Library, 1987, 113(1): 3-38. [23] FERNANDES H R, TULYAGANOV D U, PASCUAL M J, et al. The role of K2O on sintering and crystallization of glass powder compacts in the Li2O-K2O-Al2O3-SiO2 system[J]. Journal of the European Ceramic Society, 2012, 32(10): 2283-2292. |