[1] 孔德玉, 张俊芝, 倪彤元, 等. 碱激发胶凝材料及混凝土研究进展[J]. 硅酸盐学报, 2009, 37(1): 151-159. KONG D Y, ZHANG J Z, NI T Y, et al. Research progress on alkali-activated binders and concrete[J]. Journal of the Chinese Ceramic Society, 2009, 37(1): 151-159 (in Chinese). [2] 唐 宁, 王延军, 赵明宇, 等. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 148-153. TANG N, WANG Y J, ZHAO M Y, et al. Performance and hydration of one-part geopolymer activated with NaAlO2[J]. Materials Reports, 2024, 38(8): 148-153 (in Chinese). [3] ZHANG M Z, YUE F, CHEN B. Optimizing toughness and cost-effectiveness in one-part geopolymers via fiber reinforcement: a comprehensive investigation of PVA, PE, and glass fibers[J]. Construction and Building Materials, 2024, 437: 136999. [4] ALMEIDA F, CUNHA V, MIRANDA T, et al. Indirect tensile behaviour of fibre reinforced alkali-activated composites[J]. Fibers, 2018, 6(2): 30. [5] WALTON P L, MAJUMDAR A J. Cement-based composites with mixtures of different types of fibres[J]. Composites, 1975, 6(5): 209-216. [6] 张兰芳, 王道峰, 岳 瑜. 纤维增强碱激发水泥基材料的研究进展[J]. 材料科学与工程学报, 2019, 37(2): 325-330. ZHANG L F, WANG D F, YUE Y. Research progress of fiber reinforced alkali-activated cement-based composites[J]. Journal of Materials Science and Engineering, 2019, 37(2): 325-330 (in Chinese). [7] 樊晋源, 姜 屹, 王利民, 等. 剑麻-PVA混杂纤维增强地聚物抗硫酸盐侵蚀性能研究[J]. 硅酸盐通报, 2020, 39(5): 1430-1437+1443. FAN J Y, JIANG Y, WANG L M, et al. Sulfate attack resistance of sisal-PVA hybrid fiber reinforced geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1430-1437+1443 (in Chinese). [8] ZHANG P, FENG Z, YUAN W S, et al. Effect of PVA fiber on properties of geopolymer composites: a comprehensive review[J]. Journal of Materials Research and Technology, 2024, 29: 4086-4101. [9] MA H, CAI J M, LIN Z, et al. CaCO3 whisker modified engineered cementitious composite with local ingredients[J]. Construction and Building Materials, 2017, 151: 1-8. [10] 查叶铭, 张品乐, 胡 静, 等. 混杂纤维水泥基复合材料抗拉抗折性能研究及强度预测[J]. 材料导报, 2024, 38(增刊2): 165-169. ZHA Y M, ZHANG P L, HU J, et al. Study on tensile and folding properties and strength prediction of hybrid fiber reinforced cementitious composites[J]. Materials Reports, 2024, 38(supplement 2): 165-169 (in Chinese). [11] LIU T A, YANG Y Z, CHEN Z T, et al. Optimization of fiber volume fraction to enhance reinforcing efficiency in hybrid fiber reinforced strain hardening cementitious composite[J]. Cement and Concrete Composites, 2020, 113: 103704. [12] 柴鑫伟, 谢 群, 王 欣, 等. 混杂纤维高韧性水泥基复合材料拉伸性能试验研究[J]. 建筑结构学报, 2022, 43(增刊1): 353-361. CHAI X W, XIE Q, WANG X, et al. Experimental study on tensile properties of hybrid fiber high toughness cement-based composites[J]. Journal of Building Structures, 2022, 43(supplement 1): 353-361 (in Chinese). [13] JUNIOR J, SAHA A K, SARKER P K, et al. Workability and flexural properties of fibre-reinforced geopolymer using different mono and hybrid fibres[J]. Materials, 2021, 14(16): 4447. [14] SHAIKH F U A. Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites[J]. Materials & Design, 2013, 50: 674-682. [15] ZAHID M, KHAN M I, SHAFIQ N, et al. Achieving superior mechanical performance in one-part geopolymer composites through innovative hybrid fiber systems of recycled steel and PVA fibers[J]. Journal of Materials Research and Technology, 2024, 32: 1772-1787. [16] GRANJU J L, ULLAH B S. Corrosion of steel fibre reinforced concrete from the cracks[J]. Cement and Concrete Research, 2005, 35(3): 572-577. [17] 常洪雷, 金祖权, 任鹏程. 有机仿钢纤维增强混凝土断裂韧性及抗裂性能研究[J]. 混凝土, 2013(2): 46-49. CHANG H L, JIN Z Q, REN P C. Study on fracture toughness and crack resistance of steel-wire-like organic fiber reinforced concrete[J]. Concrete, 2013(2): 46-49 (in Chinese). [18] 张博明, 李 嘉, 李 煦. 混杂纤维复合材料最优纤维混杂比例及其应用研究进展[J]. 材料工程, 2014, 42(7): 107-112. ZHANG B M, LI J, LI X. Optimum mix ratio of hybrid fiber reinforced polymer composites and their researching progress[J]. Journal of Materials Engineering, 2014, 42(7): 107-112 (in Chinese). [19] ZHANG T M, WANG K, LIN B Z, et al. The enhancement mechanism of modified basalt fiber on the performance of geopolymer concrete[J]. Construction and Building Materials, 2024, 417: 135123. [20] 王 瑞, 姚直书, 方 玉, 等. 冻结井壁仿钢纤维混凝土动静态力学性能和微观结构研究[J]. 硅酸盐通报, 2024, 43(8): 2835-2847. WANG R, YAO Z S, FANG Y, et al. Dynamic and static mechanical properties and microstructure of frozen shaft lining imitation steel fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(8): 2835-2847 (in Chinese). [21] 金光淋, 殷浚哲, 于 洋, 等. 碳酸钙晶须掺量对水泥砂浆力学性能的影响研究[J]. 建筑结构, 2020, 50(增刊1): 832-836. JIN G L, YIN J Z, YU Y, et al. Study on the influence of calcium carbonate whisker content on the mechanical properties of cement mortar[J]. Building Structure, 2020, 50(supplement 1): 832-836 (in Chinese). [22] RANJBAR N, MEHRALI M, MEHRALI M, et al. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber[J]. Construction and Building Materials, 2016, 112: 629-638. [23] 高英力, 曹韩硕, 卜 涛, 等. 尾矿砂对混杂纤维水泥砂浆性能的影响研究[J]. 长沙理工大学学报(自然科学版), 2023, 20(5): 105-114. GAO Y L, CAO H S, BO T, et al. Study on the effect of tailing sand on the mechanical properties of hybrid fiber reinforced cement mortar[J]. Journal of Changsha University of Science & Technology (Natural Science), 2023, 20(5): 105-114 (in Chinese). [24] CHEN W H, JI X H, HUANG Z Y. Influence of fiber type on mechanical properties of lightweight cement-based composites[J]. Science and Engineering of Composite Materials, 2021, 28(1): 249-263. [25] MA C Y, FAN F S, CHEN M J, et al. Preparation of a novel superabsorbent fiber-cement composite and evaluation of its self-healing performance[J]. Cement and Concrete Composites, 2022, 133: 104713. [26] JIANG W G, LI X G, LV Y, et al. Cement-based materials containing graphene oxide and polyvinyl alcohol fiber: mechanical properties, durability, and microstructure[J]. Nanomaterials, 2018, 8(9): 638. [27] AMRAN M, FEDIUK R, ABDELGADER H S, et al. Fiber-reinforced alkali-activated concrete: a review[J]. Journal of Building Engineering, 2022, 45: 103638. [28] ZHANG P, GAO Z, WANG J, et al. Influencing factors analysis and optimized prediction model for rheology and flowability of nano-SiO2 and PVA fiber reinforced alkali-activated composites[J]. Journal of Cleaner Production, 2022, 366: 132988. [29] WEN C C, ZHANG P, WANG J, et al. Influence of fibers on the mechanical properties and durability of ultra-high-performance concrete: a review[J]. Journal of Building Engineering, 2022, 52: 104370. [30] GUO L, WU Y Y, XU F, et al. Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites[J]. Composites Part B: Engineering, 2020, 183: 107689. [31] LIU Y W, ZHANG Z H, SHI C J, et al. Development of ultra-high performance geopolymer concrete (UHPGC): influence of steel fiber on mechanical properties[J]. Cement and Concrete Composites, 2020, 112: 103670. [32] ALCAN H G, BAYRAK B, ÖZ A, et al. Synergetic effect of fibers on geopolymers: cost-effective and sustainable perspective[J]. Construction and Building Materials, 2024, 414: 135059. [33] ALOMAYRI T, SHAIKH F U A, LOW I M. Characterisation of cotton fibre-reinforced geopolymer composites[J]. Composites Part B: Engineering, 2013, 50: 1-6. [34] REDON C, LI V C, WU C, et al. Measuring and modifying interface properties of PVA fibers in ECC matrix[J]. Journal of Materials in Civil Engineering, 2001, 13(6): 399-406. [35] 王 璞, 黄 真, 周 岱, 等. 碳纤维混杂纤维混凝土抗冲击性能研究[J]. 振动与冲击, 2012, 31(12): 14-18. WANG P, HUANG Z, ZHOU D, et al. Impact mechanical properties of concrete reinforced with hybrid carbon fibers[J]. Journal of Vibration and Shock, 2012, 31(12): 14-18 (in Chinese). [36] LI Y L, YIN J, YUAN Q, et al. Fresh and hardened properties of cement paste and mortar incorporating calcined cutter soil mixing residue[J]. Construction and Building Materials, 2022, 357: 129376. |