[1] YUAN Y Q, ZHAO L M, LI W, et al. Research on silty soil capillary water rising in Yellow River flooded area of eastern Henan[J]. Journal of Highway and Transportation Research and Development (English Edition), 2016, 10(4): 40-46. [2] 滕显飞. 黄泛区粉土路基强夯加固数值分析与质量控制技术研究[D]. 济南: 山东大学, 2017. TENG X F. Numerical analysis and quality control of dynamic consolidation of silty soil subgrade in Yellow River alluvial plain[D]. Jinan: Shandong University, 2017 (in Chinese). [3] JIN Q, ZHENG Y J, CUI X Z, et al. Evaluation of dynamic characteristics of silt in Yellow River Flood Field after freeze-thaw cycles[J]. Journal of Central South University, 2020, 27(7): 2113-2122. [4] 杨志浩, 岳祖润, 冯怀平. 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251. YANG Z H, YUE Z R, FENG H P. Experimental study on moisture migration properties in unsaturated silty subgrade[J]. Rock and Soil Mechanics, 2020, 41(7): 2241-2251 (in Chinese). [5] 王 昊, 韦金城, 宋晓辉, 等. 黄泛区粉土工程特性及其改性固化研究进展[J]. 粉煤灰综合利用, 2023, 37(5): 107-119. WANG H, WEI J C, SONG X H, et al. A review of engineering properties of silt in the Yellow River flood area and its modification and solidification[J]. Fly Ash Comprehensive Utilization, 2023, 37(5): 107-119 (in Chinese). [6] 郑 刚, 张军辉, 章定文, 等. 地基处理技术现状与发展[J]. 土木工程学报, 2024, 57(7): 51-70. ZHENG G, ZHANG J H, ZHANG D W, et al. State-of-the-art of ground improvement technologies[J]. China Civil Engineering Journal, 2024, 57(7): 51-70 (in Chinese). [7] WU Y K, SHI K J, YU J L, et al. Research on strength degradation of soil solidified by steel slag powder and cement in seawater erosion[J]. Journal of Materials in Civil Engineering, 2020, 32(7): 04020181. [8] XU F, WEI H, QIAN W X, et al. Experimental investigation on replacing cement by sintered limestone ash from the steelmaking industry for cement-stabilized soil: engineering performances and micro-scale analysis[J]. Construction and Building Materials, 2020, 235: 117425. [9] ZHOU H Y, WANG X S, WU Y P, et al. Mechanical properties and micro-mechanisms of marine soft soil stabilized by different calcium content precursors based geopolymers[J]. Construction and Building Materials, 2021, 305: 1247. [10] 牟思宇, 谢宇斌, 杨箫滢. 我国固体废物利用处置现状与对策研究[J]. 有色金属(冶炼部分), 2023(9): 1-10. MOU S Y, XIE Y B, YANG X Y. Research on current situation and countermeasures of solid waste utilization and disposal in China[J]. Nonferrous Metals (Extractive Metallurgy), 2023(9): 1-10 (in Chinese). [11] AMINI O, GHASEMI M. Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil[J]. Construction and Building Materials, 2019, 223: 409-420. [12] 李文涛, 孙章皓, 庄 妍, 等. 氧化镁复合水泥固化硫酸盐渍土的力学、膨胀性能及微观机理[J]. 岩土工程学报, 2024, 46(9): 1840-1848. LI W T, SUN Z H, ZHUANG Y, et al. Mechanical and swelling properties, as well as micro-mechanism of sulfate-bearing soil stabilized by magnesium oxide and cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1840-1848 (in Chinese). [13] JI Q L, WANG Y J, JIA X R, et al. Experimental study on mechanical properties and stability of marine dredged mud with improvement by waste steel slag[J]. Buildings, 2024, 14(11): 347. [14] CHEN X, YU F, YU J, et al. Experimental optimization of industrial waste-based soil hardening agent: combining D-optimal design with genetic algorithm[J]. Journal of Building Engineering, 2023, 72: 106611. [15] 张小芳, 陈瑞敏, 简文彬. 水泥-矿渣-粉煤灰固化淤泥的水分转化规律及其固化机理研究[J]. 工程地质学报, 2023, 31(1): 102-112. ZHANG X F, CHEN R M, JIAN W B. Study on water conversion law and solidification mechanism of cement-slag-fly ash solidified silt[J]. Journal of Engineering Geology, 2023, 31(1): 102-112 (in Chinese). [16] ASSUMPÇÃO DE CASTRO J, AMANDA SANTOS OLIVEIRA T, KOPSCHITZ XAVIER BASTOS P, et al. Investigation of cement tiles from an environmental perspective: life cycle assessment and environmental contamination[J]. Construction and Building Materials, 2023, 398: 13249. [17] 张顶飞, 刘 涛, 郝 琪, 等. 固废基地质聚合物固化沿海软土的力学机理与劣化性能研究[J]. 应用基础与工程科学学报, 2024, 32(6): 1582-1596. ZHANG D F, LIU T, HAO Q, et al. Investigation of mechanical mechanisms and deterioration properties of geological polymers from solid waste for stabilizing coastal soft soils[J]. Journal of Basic Science and Engineering, 2024, 32(6): 1582-1596 (in Chinese). [18] 何 俊, 管家贤, 吕晓龙, 等. 纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能[J]. 硅酸盐通报, 2023, 42(4): 1344-1352. HE J, GUAN J X, LYU X L, et al. Anti-MgSO4 erosion performance of soda residue-ground granulated blast furnace slag solidified soil modified by nano-silica[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1344-1352 (in Chinese). [19] 邵 岚, 马丽萍, 杨 杰, 等. 电石渣的资源化利用现状[J]. 现代化工, 2024, 44(3): 79-83. SHAO L, MA L P, YANG J, et al. Re-utilization status of carbide slag[J]. Modern Chemical Industry, 2024, 44(3): 79-83 (in Chinese). [20] GHAFOOR M T, KHAN Q S, QAZI A U, et al. Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature[J]. Construction and Building Materials, 2021, 273: 12175. [21] 王子帅, 王东星. 工业废渣-水泥协同固化土抗硫酸盐侵蚀性能[J]. 岩土工程学报, 2022, 44(11): 2035-2042. WANG Z S, WANG D X. Performances of industrial residue-cement solidified soils in resisting sulfate erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2035-2042 (in Chinese). [22] RASHAD A M, MOSLEH Y A, MOKHTAR M M. Thermal insulation and durability of alkali-activated lightweight slag mortar modified with silica fume and fly ash[J]. Construction and Building Materials, 2024, 411: 134255. [23] 王东星, 何福金. CO2碳化-矿渣/粉煤灰协同固化土效果与机制研究[J]. 岩石力学与工程学报, 2020, 39(7): 1493-1502. WANG D X, HE F J. Investigation on performance and mechanism of CO2 carbonated slag/fly ash solidified soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1493-1502 (in Chinese). [24] 交通部公路科学研究院. 公路土工试验规程: JTG E40—2007[M]. 北京: 人民交通出版社, 2007. Highway Science Research Institute of the Ministry of Transport. Test methods of soils for highway engineering: JTG E40—2007[M]. Beijing: China Communications Press, 2007 (in Chinese). [25] 南京水利科学研究院. 土的工程分类标准: GB/T 50145—2007[M]. 南京: 中国计划出版社, 2008. Nanjing Hydraulic Research Institute. Standard for engineering classification of soil: GB/T 50145—2007[M]. Nanjing: China Planning Press, 2008 (in Chinese). [26] 李雪刚, 徐日庆, 畅 帅, 等. 响应面法优化有机质软土复合固化剂配方[J]. 浙江大学学报(工学版), 2014, 48(5): 843-849. LI X G, XU R Q, CHANG S, et al. Application of response surface methodology on optimizing mixture ratio of composite curing agent used to improve organic matter soil stabilization[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(5): 843-849 (in Chinese). [27] 金胜赫, 王修山, 吴越鹏. 矿渣-脱硫石膏-电石渣固化剂固化黏土的研究[J]. 工程地质学报, 2023, 31(2): 397-408. KIM S H, WANG X S, WU Y P. Study on modification of marine clay treated with new gdc soil stabilizer[J]. Journal of Engineering Geology, 2023, 31(2): 397-408 (in Chinese). [28] 中华人民共和国交通运输部. 公路工程无机结合料稳定材料试验规程: JTG 3441—2024[S]. 北京: 人民交通出版社, 2024. Ministry of Transport of the People’s Republic of China. Test rules for stable materials of Inorganic Bond for Highway Engineering: JTG 3441—2024[S]. Beijing: China Communications Press, 2024 (in Chinese). [29] 中华人民共和国住房和城乡建设部. 土壤固化外加剂: CJ/T 486—2015[S]. 北京: 中国标准出版社, 2016. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Soil curing admixtures: CJ/T 486—2015[S]. Beijing: Standards Press of China, 2016 (in Chinese). [30] 李 莉, 张 赛, 何 强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45. LI L, ZHANG S, HE Q, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory, 2015, 34(8): 41-45 (in Chinese). [31] CHEN K Y, WU D Z, ZHANG Z L, et al. Modeling and optimization of fly ash-slag-based geopolymer using response surface method and its application in soft soil stabilization[J]. Construction and Building Materials, 2022, 315: 1257. [32] WANG X S, KIM S, WU Y P, et al. Study on the optimization and performance of GFC soil stabilizer based on response surface methodology in soft soil stabilization[J]. Soils and Foundations, 2023, 63(2): 101278. [33] JHA A K, SIVAPULLAIAH P V. Volume change behavior of lime treated gypseous soil: influence of mineralogy and microstructure[J]. Applied Clay Science, 2016, 119(2): 202-212. [34] JIANG N J, DU Y J, LIU S Y, et al. Multi-scale laboratory evaluation of the physical, mechanical, and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue[J]. Canadian Geotechnical Journal, 2016, 53(3): 373-383. [35] 李媛媛. 固化土在道路工程软土地基处理中的应用[D]. 天津: 河北工业大学, 2015. LI Y Y. Application of stabilized Ssoil in soft clay embankments treatment of road engineering[D]. Tianjin: Hebei University of Technology, 2015 (in Chinese). [36] 曹 娃, 伊元荣, 马 佐, 等. 碱激发粉煤灰-钢渣地质聚合物的抗压强度实验研究[J]. 环境科学与技术, 2014, 37(12): 205-208. CAO W, YI Y R, MA Z, et al. Experimental study on compressive strength of geo-polymer made of alkali-excited steel slag and fly ash[J]. Environmental Science & Technology, 2014, 37(12): 205-208 (in Chinese). [37] 程国东, 黄天勇, 刘 泽, 等. 不同减水剂对地质聚合物砂浆性能影响研究[J]. 混凝土, 2020(6): 109-112. CHENG G D, HUANG T Y, LIU Z, et al. Research on the influence of different water reducers on the performance of geopolymer mortar[J]. Concrete, 2020(6): 109-112 (in Chinese). [38] HAN Y M, XIA J W, CHANG H F, et al. The influence mechanism of ettringite crystals and microstructure characteristics on the strength of calcium-based stabilized soil[J]. Materials, 2021, 14(6): 1359. |