[1] 刘建锋, 张晓果, 王晔晔. 工业废渣土壤固化剂改良黄泛区粉土研究[J]. 城市建筑, 2021, 18(26): 137-140. LIU J F, ZHANG X G, WANG Y Y. Study on stabilization of silt in yellow river flooded area with industrial waste soil solidifying agent[J]. Urbanism and Architecture, 2021, 18(26): 137-140 (in Chinese). [2] 力乙鹏, 李 婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(增刊2): 1273-1277. LI Y P, LI T. Stability mechanism and research progress of soil stabilizer[J]. Materials Reports, 2020, 34(supplement 2): 1273-1277 (in Chinese). [3] 易文杰, 李 庄, 罗竹燕, 等. 水泥行业环境影响评价低碳技术选择与应用[J]. 环境工程技术学报, 2022, 12(6): 1905-1914. YI W J, LI Z, LUO Z Y, et al. Selection and application of low carbon technologies in environmental impact assessment of cement industry[J]. Journal of Environmental Engineering Technology, 2022, 12(6): 1905-1914 (in Chinese). [4] 王兆龙, 姚沛帆, 张西华, 等. 典型大宗工业固体废物产生现状分析及产生量预测[J]. 环境工程学报, 2022, 16(3): 746-751. WANG Z L, YAO P F, ZHANG X H, et al. Current situation analysis and production forecast of typical bulk industrial solid wastes in China[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 746-751 (in Chinese). [5] 李 悦, 刘学磊, 林 辉, 等. 基于响应面法的碱硫酸盐激发固废型固化剂组成优化设计[J]. 建材世界, 2024, 45(2): 10-14. LI Y, LIU X L, LIN H, et al. Optimization design of composition of solid waste curing agent excited by alkali sulfate based on response surface method[J]. The World of Building Materials, 2024, 45(2): 10-14 (in Chinese). [6] 魏凯伦, 赵卫全, 樊恒辉. 基于响应面法的硅溶胶注浆材料配比优化研究[J]. 硅酸盐通报, 2022, 41(6): 2015-2023. WEI K L, ZHAO W Q, FAN H H. Proportion optimization of silica sol grout based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2015-2023 (in Chinese). [7] 唐郁川, 海 丹, 袁飞飞, 等. 盐激发对大掺量固废胶凝材料及其制备混凝土性能的影响[J]. 新型建筑材料, 2023, 50(9): 37-41. TANG Y C, HAI D, YUAN F F, et al. Effect of salt excitation on the properties of high volume solid waste cementitious materials and concrete preparation[J]. New Building Materials, 2023, 50(9): 37-41 (in Chinese). [8] 张顶飞, 吕启航, 张 鹏, 等. 基于响应面法的粉煤灰-电石渣地质聚合物固化软土试验研究[J]. 硅酸盐通报, 2023, 42(8): 2821-2829+2845. ZHANG D F, LYU Q H, ZHANG P, et al. Experimental study on soft soil solidified by fly ash and carbide slag geopolymer based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2821-2829+2845 (in Chinese). [9] 刘树龙, 李公成, 刘国磊, 等. 基于响应面法的矿渣基全固废胶凝材料配比优化[J]. 硅酸盐通报, 2021, 40(1): 187-193. LIU S L, LI G C, LIU G L, et al. Ratio optimization of slag-based solid waste cementitious material based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 187-193 (in Chinese). [10] 张兰芳, 曹 胜. 基于响应面法的碱激发矿渣-玻璃粉胶凝材料的制备研究[J]. 新型建筑材料, 2017, 44(9): 37-39+59. ZHANG L F, CAO S. Study on preparation of alkali-activated slag-glass powder cementitious materials based on response surface method[J]. New Building Materials, 2017, 44(9): 37-39+59 (in Chinese). [11] 畅 帅, 徐日庆, 李雪刚, 等. 基于响应面法的淤泥质土固化配方优化研究[J]. 岩土力学, 2014, 35(1): 105-111. CHANG S, XU R Q, LI X G, et al. Optimization of formula for stabilizing muddy soil using response surface methodology[J]. Rock and Soil Mechanics, 2014, 35(1): 105-111 (in Chinese). [12] 刘 扬, 陈 湘, 王柏文, 等. 碱激发粉煤灰-矿渣-电石渣基地聚物的制备及强度机理[J]. 硅酸盐通报, 2023, 42(4): 1353-1362. LIU Y, CHEN X, WANG B W, et al. Preparation and strength mechanism of alkali-activated fly ash-slag-carbide slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1353-1362 (in Chinese). [13] 刘松玉, 张 涛, 蔡国军. 工业废弃木质素固化改良粉土路基技术与应用研究[J]. 中国公路学报, 2018, 31(3): 1-11. LIU S Y, ZHANG T, CAI G J. Research on technology and engineering application of silt subgrade solidified by lignin-based industrial by-product[J]. China Journal of Highway and Transport, 2018, 31(3): 1-11 (in Chinese). [14] 孙仁娟, 方 晨, 高发亮, 等. 基于固弃物的固化土路用性能及固化机理研究[J]. 中国公路学报, 2021, 34(10): 216-224. SUN R J, FANG C, GAO F L, et al. Study on pavement performance and solidified mechanism of solidified soil based on solid waste[J]. China Journal of Highway and Transport, 2021, 34(10): 216-224 (in Chinese). [15] HORPIBULSUK S, PHETCHUAY C, CHINKULKIJNIWAT A. Soil stabilization by calcium carbide residue and fly ash[J]. Journal of Materials in Civil Engineering, 2012, 24(2): 184-193. [16] 郭 强, 张晓雷, 史晨曦, 等. 赤泥-矿渣基地聚物固化黄土冻融后力学特性研究[J]. 硅酸盐通报, 2024, 43(4): 1482-1489. GUO Q, ZHANG X L, SHI C X, et al. Study on mechanical properties of loess solidified by red mud-slag matrix polymer after freezing and thawing[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(4): 1482-1489 (in Chinese). [17] 李 胜, 张红日, 王桂尧, 等. 基于响应面法的碱激发地聚物固化淤泥质土试验研究[J]. 硅酸盐通报, 2023, 42(12): 4438-4448. LI S, ZHANG H R, WANG G Y, et al. Experimental study of alkali-activated geopolymer cured silty soil based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4438-4448 (in Chinese). [18] 罗晓洪, 张世俊, 郭荣鑫, 等. 电石渣替代水泥作碱激发剂对过硫磷石膏胶凝材料性能和微观结构的影响[J]. 材料导报, 2023, 37(增刊2): 298-304. LUO X H, ZHANG S J, GUO R X, et al. Effect of carbide slag instead of cement as alkali activator on properties and microstructure of excess sulphate phosphogypsum cementitious material[J]. Materials Reports, 2023, 37(supplement 2): 298-304 (in Chinese). [19] GONG X, NIU J G, LIANG S H, et al. Solidification of Nansha soft clay using cement-based composite curing agents[J]. Advances in Cement Research, 2020, 32(2): 66-77. |