[1] 朱 伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41+50. ZHU W, ZHANG C L, LIU H L, et al. The status quo of dredged spoils utilization[J]. Environmental Science and Technology, 2002, 25(4): 39-41+50 (in Chinese). [2] 周永祥, 霍孟浩, 侯 莉, 等. 低强度流态填筑材料的研究现状及展望[J]. 材料导报, 2024, 38(15): 130-138. ZHOU Y X, HUO M H, HOU L, et al. Current research and prospect of low strength flowable filling materials[J]. Materials Reports, 2024, 38(15): 130-138 (in Chinese). [3] 李丽华, 韩琦培, 杨 星, 等. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究[J]. 土木工程学报, 2023, 56(12): 166-176. LI L H, HAN Q P, YANG X, et al. Mechanical properties and micro-mechanisms of RHA-cement solidified sludge[J]. China Civil Engineering Journal, 2023, 56(12): 166-176 (in Chinese). [4] BAYESTEH H, HEZAREH H. Behavior of cement-stabilized marine clay and pure clay minerals exposed to high salinity grout[J]. Construction and Building Materials, 2023, 383: 131334. [5] 邓永锋, 吴子龙, 刘松玉, 等. 地聚合物对水泥固化土强度的影响及其机理分析[J]. 岩土工程学报, 2016, 38(3): 446-453. DENG Y F, WU Z L, LIU S Y, et al. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453 (in Chinese). [6] 郎瑞卿, 裴璐熹, 孙立强, 等. 新拌不同液限淤泥固化土流动性试验研究[J]. 岩土力学, 2023, 44(10): 2789-2797. LANG R Q, PEI L X, SUN L Q, et al. Experimental study on the flowability of freshly mixed solidified muds with different liquid limits[J]. Rock and Soil Mechanics, 2023, 44(10): 2789-2797 (in Chinese). [7] 王文军, 袁飞飞, 蒋建良, 等. 高含水率吹填淤泥固化土强度特性及预测模型[J]. 地下空间与工程学报, 2021, 17(2): 461-467. WANG W J, YUAN F F, JIANG J L, et al. Strength properties and prediction models of solidified dredger filled mud with high water-content[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(2): 461-467 (in Chinese). [8] 邵吉成, 李送根, 张旺兴, 等. 淤泥初始含水率及压实度对固化土强度的影响[J/OL]. 土木工程学报, 1-13 (2023-12-08)[2024-08-02]. https://doi.org/10.15951/j.tmgcxb.23070579. SHAO J C, LI S G, ZHANG W X, et al. Effect of initial moisture content and compactness of sludge on strength of solidified soil[J/OL]. China Civil Engineering Journal, 1-13 (2023-12-08)[2024-08-02]. https://doi.org/10.15951/j.tmgcxb.23070579 (in Chinese). [9] 刘 丽. 软土固化中级配与水的作用机制及其调控[D]. 南京: 东南大学, 2022. LIU L. Action mechanism and regulation of secondary mixing water in soft soil solidification[D]. Nanjing: Southeast University, 2022 (in Chinese). [10] 冯志超, 朱 伟, 张春雷, 等. 黏粒含量对固化淤泥力学性质的影响[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3052-3057. FENG Z C, ZHU W, ZHANG C L, et al. Influence of clay content on mechanical properties of solidified silt[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(supplement 1): 3052-3057 (in Chinese). [11] 卞 夏, 叶迎春, 刘 凯, 等. 土性对工程泥浆固化强度影响规律及微观机理[J]. 地球学报, 2024, 45(1): 123-130. BIAN X, YE Y C, LIU K, et al. The influence of soil properties on the stabilization strength of engineering slurry and its micro-mechanism[J]. Acta Geoscientica Sinica, 2024, 45(1): 123-130 (in Chinese). [12] 黄继志. 水泥基矿物分散体系的微观作用力及流变性研究[D]. 广州: 华南理工大学, 2021. HUANG J Z. Study on micro-force and rheology of cement-based mineral dispersion system[D]. Guangzhou: South China University of Technology, 2021 (in Chinese). [13] WANG F T, LI K Q, LIU Y. Optimal water-cement ratio of cement-stabilized soil[J]. Construction and Building Materials, 2022, 320: 126211. [14] GAO Y F, ZHAO G, MA P C, et al. Preliminary study on the water film at the soil-structure interface under cyclic loading[J]. Marine Georesources & Geotechnology, 2024: 1-5. [15] 韩婷婷, 吴思麟, 吕一彦. 泥浆中水分形态对抗剪强度与流变性的影响[J]. 长江科学院院报, 2018, 35(2): 104-108. HAN T T, WU S L, LÜ Y Y. Effect of water form on shear strength and rheologic performance of slurry[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(2): 104-108 (in Chinese). [16] 胡湘锋. 黏土中水的形态对其工程性质的影响研究[D]. 广州: 华南理工大学, 2017. HU X F. A study on the influence of water's state in clay on its Engineering properties[D]. Guangzhou: South China University of Technology, 2017 (in Chinese). [17] LI H, WU A X, CHENG H Y. Generalized models of slump and spread in combination for higher precision in yield stress determination[J]. Cement and Concrete Research, 2022, 159: 106863. [18] BARGHI KHEZERLOO A, DEHGHAN S M, SEPASDAR M. Using dune sand in controlled low-strength material for backfilling: field installation and numerical simulation[J]. Journal of Pipeline Systems Engineering and Practice, 2021, 12(1): 04020055. [19] 尹振华, 张建明, 张 虎, 等. 水泥改良冻土过程水分转化规律及对强度的影响[J]. 哈尔滨工业大学学报, 2021, 53(11): 136-144. YIN Z H, ZHANG J M, ZHANG H, et al. Water transformation law of cement improved frozen soil and its effect on strength[J]. Journal of Harbin Institute of Technology, 2021, 53(11): 136-144 (in Chinese). [20] 孙国文, 孙 伟, 张云升, 等. 硅酸盐水泥水化产物体积分数定量计算[J]. 东南大学学报(自然科学版), 2011, 41(3): 606-610. SUN G W, SUN W, ZHANG Y S, et al. Quantitative calculation on volume fraction of hydrated products in Portland cement[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(3): 606-610 (in Chinese). [21] SHEEN Y N, ZHANG L H, LE D H. Engineering properties of soil-based controlled low-strength materials as slag partially substitutes to Portland cement[J]. Construction and Building Materials, 2013, 48: 822-829. [22] ZHANG R, XIAO Y P, GAO Q F, et al. Effect of adsorbed water on compression behavior of high liquid limit soils[J]. Journal of Central South University, 2023, 30(2): 530-541. [23] GUO Q Q, CHEN Y H, XU J, et al. Investigation on mechanical parameters and microstructure of soil-based controlled low-strength materials with polycarboxylate superplasticizer[J]. Applied Sciences, 2024, 14(3): 1029. |