BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2026, Vol. 45 ›› Issue (1): 246-255.DOI: 10.16552/j.cnki.issn1001-1625.2025.0627
Previous Articles Next Articles
YANG Maosheng1(
), ZHANG Haibo2(
)
Received:2025-06-27
Revised:2025-08-31
Online:2026-01-20
Published:2026-02-10
CLC Number:
YANG Maosheng, ZHANG Haibo. Research of Cement-Based Grouting Materials of Calcium Aluminate Cement-Gypsum-Lime Ternary System[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 246-255.
| Material | Mass fraction/% | ||||||
|---|---|---|---|---|---|---|---|
| Al2O3 | CaO | SiO2 | Fe2O3 | MgO | SO3 | TiO2 | |
| CAC | 54.35 | 31.76 | 7.06 | 1.65 | 0.70 | 0.87 | 1.89 |
| Gypsum | 0.23 | 39.40 | 2.83 | 0.03 | 1.36 | 54.16 | 0.60 |
| Lime | 1.18 | 91.72 | 2.48 | 0.28 | 2.44 | 1.19 | — |
Table 1 Main chemical composition of CAC, gypsum, and lime
| Material | Mass fraction/% | ||||||
|---|---|---|---|---|---|---|---|
| Al2O3 | CaO | SiO2 | Fe2O3 | MgO | SO3 | TiO2 | |
| CAC | 54.35 | 31.76 | 7.06 | 1.65 | 0.70 | 0.87 | 1.89 |
| Gypsum | 0.23 | 39.40 | 2.83 | 0.03 | 1.36 | 54.16 | 0.60 |
| Lime | 1.18 | 91.72 | 2.48 | 0.28 | 2.44 | 1.19 | — |
| No. | Mass fraction/% | ||
|---|---|---|---|
| CAC | Gypsum | Lime | |
| C30A70L0 | 30 | 70 | 0 |
| C40A60L0 | 40 | 60 | 0 |
| C40A48L12 | 40 | 48 | 12 |
| C40A36L24 | 40 | 36 | 24 |
| C40A30L30 | 40 | 30 | 30 |
| C40A24L36 | 40 | 24 | 36 |
| C40A12L48 | 40 | 12 | 48 |
| C40A0L60 | 40 | 0 | 60 |
| C50A50L0 | 50 | 50 | 0 |
| C50A40L10 | 50 | 40 | 10 |
| C50A30L20 | 50 | 30 | 20 |
| C50A25L25 | 50 | 25 | 25 |
| C50A20L30 | 50 | 20 | 30 |
| C50A10L40 | 50 | 10 | 40 |
| C50A0L50 | 50 | 0 | 50 |
| C60A40L0 | 60 | 40 | 0 |
| C60A32L8 | 60 | 32 | 8 |
| C60A24L16 | 60 | 24 | 16 |
| C60A20L20 | 60 | 20 | 20 |
| C60A16L24 | 60 | 16 | 24 |
| C60A8L32 | 60 | 8 | 32 |
| C60A0L40 | 60 | 0 | 40 |
| C70A30L0 | 70 | 30 | 0 |
| C70A24L6 | 70 | 24 | 6 |
| C70A18L12 | 70 | 18 | 12 |
| C70A15L15 | 70 | 15 | 15 |
| C70A12L18 | 70 | 12 | 18 |
| C70A6L24 | 70 | 6 | 24 |
| C80A20L0 | 80 | 20 | 0 |
| C80A16L4 | 80 | 16 | 4 |
| C80A12L8 | 80 | 12 | 8 |
| C80A8L12 | 80 | 8 | 12 |
| C80A4L16 | 80 | 4 | 16 |
| C80A0L20 | 80 | 0 | 20 |
| C90A10L0 | 90 | 10 | 0 |
| C90A8L2 | 90 | 8 | 2 |
| C90A6L4 | 90 | 6 | 4 |
| C90A5L5 | 90 | 5 | 5 |
| C90A4L6 | 90 | 4 | 6 |
| C90A2L8 | 90 | 2 | 8 |
| C90A0L10 | 90 | 0 | 10 |
| C100A0L0 | 100 | 0 | 0 |
Table 2 Experimental mix proportion of ternary system
| No. | Mass fraction/% | ||
|---|---|---|---|
| CAC | Gypsum | Lime | |
| C30A70L0 | 30 | 70 | 0 |
| C40A60L0 | 40 | 60 | 0 |
| C40A48L12 | 40 | 48 | 12 |
| C40A36L24 | 40 | 36 | 24 |
| C40A30L30 | 40 | 30 | 30 |
| C40A24L36 | 40 | 24 | 36 |
| C40A12L48 | 40 | 12 | 48 |
| C40A0L60 | 40 | 0 | 60 |
| C50A50L0 | 50 | 50 | 0 |
| C50A40L10 | 50 | 40 | 10 |
| C50A30L20 | 50 | 30 | 20 |
| C50A25L25 | 50 | 25 | 25 |
| C50A20L30 | 50 | 20 | 30 |
| C50A10L40 | 50 | 10 | 40 |
| C50A0L50 | 50 | 0 | 50 |
| C60A40L0 | 60 | 40 | 0 |
| C60A32L8 | 60 | 32 | 8 |
| C60A24L16 | 60 | 24 | 16 |
| C60A20L20 | 60 | 20 | 20 |
| C60A16L24 | 60 | 16 | 24 |
| C60A8L32 | 60 | 8 | 32 |
| C60A0L40 | 60 | 0 | 40 |
| C70A30L0 | 70 | 30 | 0 |
| C70A24L6 | 70 | 24 | 6 |
| C70A18L12 | 70 | 18 | 12 |
| C70A15L15 | 70 | 15 | 15 |
| C70A12L18 | 70 | 12 | 18 |
| C70A6L24 | 70 | 6 | 24 |
| C80A20L0 | 80 | 20 | 0 |
| C80A16L4 | 80 | 16 | 4 |
| C80A12L8 | 80 | 12 | 8 |
| C80A8L12 | 80 | 8 | 12 |
| C80A4L16 | 80 | 4 | 16 |
| C80A0L20 | 80 | 0 | 20 |
| C90A10L0 | 90 | 10 | 0 |
| C90A8L2 | 90 | 8 | 2 |
| C90A6L4 | 90 | 6 | 4 |
| C90A5L5 | 90 | 5 | 5 |
| C90A4L6 | 90 | 4 | 6 |
| C90A2L8 | 90 | 2 | 8 |
| C90A0L10 | 90 | 0 | 10 |
| C100A0L0 | 100 | 0 | 0 |
| No. | Mass fraction/% | |||
|---|---|---|---|---|
| CAC | Gypsum | Lime | ||
| C55A41.2L3.8 | 55 | 41.2 | 3.8 | |
| C55A37.5L7.5 | 55 | 37.5 | 7.5 | |
| C55A33.7L11.3 | 55 | 33.7 | 11.3 | |
| C55A30.0L15.0 | 55 | 30.0 | 15.0 | |
| C60A36.7L3.3 | 60 | 36.7 | 3.3 | |
| C60A33.3L6.7 | 60 | 33.3 | 6.7 | |
| C60A30.0L10.0 | 60 | 30.0 | 10.0 | |
| C60A26.7L13.3 | 60 | 26.7 | 13.3 | |
| C65A32.1L2.9 | 65 | 32.1 | 2.9 | |
| C65A29.2L5.8 | 65 | 29.2 | 5.8 | |
| C65A26.2L8.8 | 65 | 26.2 | 8.8 | |
| C65A23.3L11.7 | 65 | 23.3 | 11.7 | |
Table 3 Mix proportion of test
| No. | Mass fraction/% | |||
|---|---|---|---|---|
| CAC | Gypsum | Lime | ||
| C55A41.2L3.8 | 55 | 41.2 | 3.8 | |
| C55A37.5L7.5 | 55 | 37.5 | 7.5 | |
| C55A33.7L11.3 | 55 | 33.7 | 11.3 | |
| C55A30.0L15.0 | 55 | 30.0 | 15.0 | |
| C60A36.7L3.3 | 60 | 36.7 | 3.3 | |
| C60A33.3L6.7 | 60 | 33.3 | 6.7 | |
| C60A30.0L10.0 | 60 | 30.0 | 10.0 | |
| C60A26.7L13.3 | 60 | 26.7 | 13.3 | |
| C65A32.1L2.9 | 65 | 32.1 | 2.9 | |
| C65A29.2L5.8 | 65 | 29.2 | 5.8 | |
| C65A26.2L8.8 | 65 | 26.2 | 8.8 | |
| C65A23.3L11.7 | 65 | 23.3 | 11.7 | |
| [1] | 赵光明, 王艳芬, 艾 洁, 等. 矿用水泥基注浆材料的发展及展望[J]. 中国矿业大学学报, 2024, 53(1): 1-22. |
| ZHAO G M, WANG Y F, AI J, et al. Development and prospect of cement-based grouting materials for coal mine[J]. Journal of China University of Mining & Technology, 2024, 53(1): 1-22 (in Chinese). | |
| [2] | 徐长波. 矿用聚氨酯注浆加固材料存在问题及研究展望[J]. 陕西煤炭, 2024, 43(4): 142-145. |
| XU C B. Study and prospect on development of mine polyurethane grouting reinforcement materials[J]. Shaanxi Coal, 2024, 43(4): 142-145 (in Chinese). | |
| [3] |
MOFFATT E G, THOMAS M D A. Performance of rapid-repair concrete in an aggressive marine environment[J]. Construction and Building Materials, 2017, 132: 478-486.
DOI URL |
| [4] |
GRANDCLERC A, DANGLA P, GUEGUEN-MINERBE M, et al. Modelling of the sulfuric acid attack on different types of cementitious materials[J]. Cement and Concrete Research, 2018, 105: 126-133.
DOI URL |
| [5] |
KOKSAL F, COŞAR K, DENER M, et al. Insulating and fire-resistance performance of calcium aluminate cement based lightweight mortars[J]. Construction and Building Materials, 2023, 362: 129759.
DOI URL |
| [6] |
ACHER L, DE NOIRFONTAINE M N, CHARTIER D, et al. H2 production under gamma irradiation of a calcium aluminate cement: an experimental study on both cement pastes and its stable hydrates[J]. Radiation Physics and Chemistry, 2021, 189: 109689.
DOI URL |
| [7] |
KONONENKO O A, KOZLITIN E A. Monolith matrix of calcium aluminate and gypsum: promising material for incorporating NaNO3-containing liquid radioactive waste[J]. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332(10): 4065-4073.
DOI |
| [8] |
MOSTAFA N Y, ZAKI Z I, HABD ELKADER O. Chemical activation of calcium aluminate cement composites cured at elevated temperature[J]. Cement and Concrete Composites, 2012, 34(10): 1187-1193.
DOI URL |
| [9] |
SAKAI E, SUGIYAMA T, SAITO T, et al. Mechanical properties and micro-structures of calcium aluminate based ultra high strength cement[J]. Cement and Concrete Research, 2010, 40(6): 966-970.
DOI URL |
| [10] | BENSTED J. Scientific aspects of high alumina cement[J]. Cement Wapno Beton, 2004, 9: 109-133. |
| [11] |
PACEWSKA B, NOWACKA M. Studies of conversion progress of calcium aluminate cement hydrates by thermal analysis method[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(2): 653-660.
DOI URL |
| [12] |
MIDGLEY H G, MIDGLEY A. The conversion of high alumina cement[J]. Magazine of Concrete Research, 1975, 27(91): 59-77.
DOI URL |
| [13] |
HIDALGO A, GARCÍA J L, ALONSO M C, et al. Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash[J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(2): 335-345.
DOI URL |
| [14] |
WANG F, SUN X K, TAO Z, et al. Effect of silica fume on compressive strength of ultra-high-performance concrete made of calcium aluminate cement/fly ash based geopolymer[J]. Journal of Building Engineering, 2022, 62: 105398.
DOI URL |
| [15] |
LIU K Q, MA Y, YUAN Z, et al. Optimisation of early hydration, microstructure, and elevated-temperature resistance of calcium aluminate cement using steel-making slag[J]. Ceramics International, 2022, 48(23): 35328-35339.
DOI URL |
| [16] |
ABOLHASANI A, NAZARPOUR H, DEHESTANI M. Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete[J]. Engineering Fracture Mechanics, 2021, 242: 107446.
DOI URL |
| [17] |
SON H M, PARK S, KIM H Y, et al. Effect of CaSO4 on hydration and phase conversion of calcium aluminate cement[J]. Construction and Building Materials, 2019, 224: 40-47.
DOI URL |
| [18] |
LI H X, XU C, LI L, et al. Insight into the influences of β-hemihydrate and dihydrate gypsum on the properties and phase conversion of white calcium aluminate cement[J]. Construction and Building Materials, 2020, 263: 120106.
DOI URL |
| [19] |
LI J C, CHANG J, WANG T, et al. Effects of phosphogypsum on hydration properties and strength of calcium aluminate cement[J]. Construction and Building Materials, 2022, 347: 128398.
DOI URL |
| [20] | PARK S M, JANG J G, SON H M, et al. Stable conversion of metastable hydrates in calcium aluminate cement by early carbonation curing[J]. Journal of CO2 Utilization, 2017, 21: 224-226. |
| [21] | ENGBERT A, PLANK J. Templating effect of alginate and related biopolymers as hydration accelerators for calcium alumina cement-a mechanistic study[J]. Materials & Design, 2020, 195: 109054. |
| [22] |
ENGBERT A, GRUBER S, PLANK J. The effect of alginates on the hydration of calcium aluminate cement[J]. Carbohydrate Polymers, 2020, 236: 116038.
DOI URL |
| [23] |
BORIS R, ANTONOVIČ V, KERIENĖ J, et al. The effect of carbon fiber additive on early hydration of calcium aluminate cement[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(3): 1061-1070.
DOI URL |
| [24] |
FERNÁNDEZ-CARRASCO L, TORRÉNS-MARTÍN D, MARTÍNEZ-RAMÍREZ S. Carbonation of ternary building cementing materials[J]. Cement and Concrete Composites, 2012, 34(10): 1180-1186.
DOI URL |
| [25] |
WANG Y L, YU J, WANG J J, et al. Effects of sodium aluminate and quicklime on the properties of CSA grouting materials[J]. Journal of Building Engineering, 2022, 58: 105060.
DOI URL |
| [26] |
LOU W B, GUAN B H, WU Z B. Calorimetric study of ternary binder of calcium aluminate cement, Portland-limestone cement and FGD gypsum[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 119-127.
DOI URL |
| [27] |
ZHANG J J, LI G X, YANG X F, et al. Study on a high strength ternary blend containing calcium sulfoaluminate cement/calcium aluminate cement/ordinary Portland cement[J]. Construction and Building Materials, 2018, 191: 544-553.
DOI URL |
| [28] |
TORRENS-MARTÍN D, WINNEFELD F, FERNÁNDEZ-CARRASCO L J. Thermodynamic model for ternary OPC/CAC/calcium sulfate binders[J]. Construction and Building Materials, 2021, 302: 124120.
DOI URL |
| [29] |
PASTOR C, FERNÁNDEZ-JIMÉNEZ A, VÁZQUEZ T, et al. Calcium aluminate cement hydration in a high alkalinity environment[J]. Materiales de Construcción, 2009, 59(293): 21-34.
DOI URL |
| [30] |
ŠOUKAL F, KOPLÍK J, PTÁČEK P, et al. The influence of pH buffers on hydration of hydraulic phases in system CaO-Al2O3 [J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2): 629-638.
DOI URL |
| [31] |
BORIS R, WILIŃSKA I, PACEWSKA B, et al. Investigations of the influence of nano-admixtures on early hydration and selected properties of calcium aluminate cement paste[J]. Materials, 2022, 15(14): 4958.
DOI URL |
| [32] |
QOKU E, BIER T A, SCHMIDT G, et al. Impact of sulphate source on the hydration of ternary pastes of Portland cement, calcium aluminate cement and calcium sulphate[J]. Cement and Concrete Composites, 2022, 131: 104502.
DOI URL |
| [33] |
DING W W, HE Y J, LU L N, et al. Comparative study of hydration of monocalcium aluminate and quaternary phase and the amorphous AH3 phase in their hydrates[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(2): 707-716.
DOI |
| [1] | WANG Qingpei, LI Hui, ZHENG Wukui, YUAN Wenbin, CHANG Ning, ZHOU Zhou. Mechanical and Thermal Properties of Gypsum-Based Self-Leveling Mortar Incorporated with Brick Slag-Based Energy Storage Particles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 212-226. |
| [2] | HE Zhaoyi, ZOU Meng, YAO Qiwen, CAO Dongwei, QIN Meng. Performance and Strength Formation Mechanism of High Dosage Phosphogypsum-Cement-Curing Agent Stabilized Crushed Stone Base Layer Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 346-358. |
| [3] | ZHU Jianping, CAO Jianan, WANG Zuolin, LI Genshen, LIU Songhui, ZHENG Bo, FENG Chunhua. Preparation of Carbonation-Bonded Clinker from Low-Calcium High-Magnesium Limestone and Its Carbonation-Hardening Mechanism [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2762-2770. |
| [4] | ZHOU Yifan, ZHANG Weiye, CHEN Anjian, RAN Jinlin, WANG Dongxing. Review on Performance Enhancements and Engineering Applications of Geopolymer Grouting Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2873-2890. |
| [5] | LI Yisheng, LYU Wei, WU Chiqiu, YU Zhengkang, HE Jing, SHUI Zhonghe. Hardened Body Preparation and Performance Adjustment of High Content Phosphogypsum Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2944-2954. |
| [6] | HU Jianlin, LI Zhilin, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Mechanical Properties of Quicklime-Activated Ground Blast Furnace Slag-Fly Ash Geopolymer-Stabilized Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2912-2923. |
| [7] | CAO Ruidong, WANG Yibo, ZHAO Jie, CHEN Haojie, DUAN Rui, REN Linjie. Research Progress on Corrosion Behavior of Hydraulic Lime [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2355-2367. |
| [8] | DENG Xinghui, XU Guihong, BAO Lixin, XU Weihong, CHEN Ziwei, YANG Bulei. Mechanical Properties and Pores Three-Parameter Distribution of Phosphogypsum-Based Extruded Special-Shaped Brick (PG-ESB) [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2240-2249. |
| [9] | JIANG Heng, CHAI Hucheng, LIU Erceng, ZHANG Haibo, SONG Changsheng, GONG Zhili. Effect of In-Situ Polymerization on Properties ofCement-Based Grouting Reinforcement Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2149-2158. |
| [10] | QI Guangzheng, ZHANG Qiang, LIU Xuan. Regulation Mechanism of Flue Gas Desulfurization Gypsum on Hydration Characteristics of Supersulfated Cement Co-Activated withCalcium Aluminate and Carbide Slag [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2250-2258. |
| [11] | SU Ying, GONG Wei, LIU Chuanbei, ZHANG Jun. Mix Ratio Design and Mechanical Properties of Phosphogypsum Lightweight Aggregate Concrete Based on Machine Learning [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1656-1665. |
| [12] | REN Caifu, WANG Dongmin, FANG Kuizhen, WANG Jixiang, ZHANG Xinlong, CHEN Wei. Properties and Hardening Mechanism of Solid Waste Based Grouting Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1328-1336. |
| [13] | REN Jun, YU Yongkun, MAO Wenting, ZHANG Yu, WANG Dafu. Performance of Mortar Based on Phosphogypsum-Based Fine Lightweight Aggregate [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1420-1427. |
| [14] | WANG Ziyan, SUN Tao, OUYANG Gaoshang. Review on Performance Regulation of Phosphogypsum-Based Excess-Sulphate Slag Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1208-1226. |
| [15] | MEI Wenzheng, GAO Peng, YU Chang, YUAN Hao, ZHOU Mingkai. Composite Reinforcement Effect of GGBFS-Sulfate on CFBFA-Based Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1337-1345. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||