BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (4): 1208-1226.DOI: 10.16552/j.cnki.issn1001-1625.2024.1607
• Reviews • Previous Articles Next Articles
WANG Ziyan1,2, SUN Tao1,3, OUYANG Gaoshang1,2
Received:2024-12-24
Revised:2025-02-12
Online:2025-04-15
Published:2025-04-18
CLC Number:
WANG Ziyan, SUN Tao, OUYANG Gaoshang. Review on Performance Regulation of Phosphogypsum-Based Excess-Sulphate Slag Cement[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1208-1226.
| [1] 赵青林, 周明凯. 超硫酸盐水泥在德国的研究与应用[J]. 新世纪水泥导报, 2008, 14(6): 5-10+25. ZHAO Q L, ZHOU M K. Research and application of supersuiphated cement in Germany[J]. Cement Guide for New Epoch, 2008, 14(6): 5-10+25 (in Chinese). [2] 常 硕, 王 露, 李新宇, 等. 超硫酸盐水泥基材料耐化学侵蚀特性综述[J]. 硅酸盐通报, 2024, 43(12): 4271-4284. CHANG S, WANG L, LI X Y, et al. Summary of chemical erosion resistance of super sulfate cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(12): 4271-4284 (in Chinese). [3] 林宗寿. 过硫磷石膏矿渣水泥与混凝土[M]. 武汉: 武汉理工大学出版社, 2015. LIN Z S, HUANG Y, SHUI Z H, et al. Excess-sulfate phosphogypsum slag cement and concrete[M]. Wuhan: Wuhan University of Technology Press, 2010 (in Chinese). [4] 黄 赟. 磷石膏基水泥的开发研究[D]. 武汉: 武汉理工大学, 2010. HUANG Y. Development and research of phosphogypsum-based cement[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). [5] HUANG Y, LIN Z S. Investigation on phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement[J]. Construction and Building Materials, 2010, 24(7): 1296-1301. [6] 田素芳. 过硫磷石膏矿渣水泥混凝土的配合比设计及性能研究[D]. 武汉: 武汉理工大学, 2013. TIAN S F. Mix proportion design and performance study of supersulphated cement concrete with peroxothion[D]. Wuhan: Wuhan University of Technology, 2013 (in Chinese). [7] 郑 旭, 刘 晨, 颜碧兰, 等. 过硫磷石膏矿渣水泥浆耐水性能研究[J]. 水泥, 2017(4): 11-15. ZHENG X, LIU C, YAN B L, et al. Study of hydrolytic resistance of slag cement paste with phosphogypsum containing rich sulfur[J]. Cement, 2017(4): 11-15 (in Chinese). [8] ZHANG J X, CUI K, CHANG J, et al. Phosphogypsum-based building materials: resource utilization, development, and limitation[J]. Journal of Building Engineering, 2024, 91: 109734. [9] SUN T, XIAO X Y, OUYANG G S, et al. Utilization of waterglass coatings to improve the carbonization resistance of excess-sulphate phosphogypsum slag plastering mortar[J]. Construction and Building Materials, 2023, 408: 133644. [10] XU J, XU F, JIANG Y, et al. Mechanical properties and soluble phosphorus solidification mechanism of a novel high amount phosphogypsum-based mortar[J]. Construction and Building Materials, 2023, 394: 132176. [11] DING C, SUN T, SHUI Z H, et al. Physical properties, strength, and impurities stability of phosphogypsum-based cold-bonded aggregates[J]. Construction and Building Materials, 2022, 331: 127307. [12] OUYANG G S, CHEN J J, WANG Z Y, et al. Valorization of alkali-activated fly ash-slag claddings to enhance the mechanical and leaching properties of phosphogypsum-based cold-bonded aggregates[J]. Developments in the Built Environment, 2024, 18: 100464. [13] OUYANG G S, SUN T, WANG Z Y, et al. Consecutive pozzolanic layerings to depress internal-sulfate-attack corrosion of OPC by phosphogypsum-based cold bonded aggregates[J]. Corrosion Science, 2024, 240: 112458. [14] LIU G, HE M H, CHEN H, et al. Study on the curing conditions on the physico-mechanical and environmental performance of phosphogypsum-based artificial aggregates[J]. Construction and Building Materials, 2024, 415: 135030. [15] SUN T, XU D, OUYANG G S, et al. Mechanical properties and environmental implications of excess-sulfate cement concrete with phosphogypsum-based cold-bonded fine aggregates[J]. Journal of Building Engineering, 2024, 95: 110008. [16] OUYANG G S, SUN T, GUO Y H, et al. Study on the composite compatibility and interfacial properties of excess sulfate phosphogypsum cementing system to OPC and CSˉ A[J]. Composite Structures, 2024, 345: 118389. [17] SUN T, LI W M, XU F, et al. A new eco-friendly concrete made of high content phosphogypsum based aggregates and binder: mechanical properties and environmental benefits[J]. Journal of Cleaner Production, 2023, 400: 136555. [18] 徐 方, 李 恒, 孙 涛, 等. 过硫磷石膏矿渣水泥路面基层材料微观结构及力学性能[J]. 建筑材料学报, 2022, 25(3): 228-234+277. XU F, LI H, SUN T, et al. Microstructure and mechanical properties of excess-sulfate phosphogypsum slag cementitious road base material[J]. Journal of Building Materials, 2022, 25(3): 228-234+277 (in Chinese). [19] LIANG Y S, GUAN B, CAO T W, et al. Study on the properties of an excess-sulphate phosphogypsum slag cement stabilized base-course mixture containing phosphogypsum-based artificial aggregate[J]. Construction and Building Materials, 2023, 409: 134095. [20] LIU G, GUAN B, LIANG Y S, et al. Preparation of phosphogypsum (PG) based artificial aggregate and its application in the asphalt mixture[J]. Construction and Building Materials, 2022, 356: 129218. [21] QIN X T, CAO Y H, GUAN H W, et al. Resource utilization and development of phosphogypsum-based materials in civil engineering[J]. Journal of Cleaner Production, 2023, 387: 135858. [22] SUN T, HE J T, MO Z L, et al. Groutability prediction model of coral sand reinforced by excess-sulfate phosphogypsum slag grouting material under permeation grouting[J]. Construction and Building Materials, 2024, 451: 138697. [23] GU K, CHEN B, PAN Y J. Utilization of untreated-phosphogypsum as filling and binding material in preparing grouting materials[J]. Construction and Building Materials, 2020, 265: 120749. [24] WANG Z Y, SUN T, OUYANG G S, et al. Simultaneous enhanced phosphorus removal and hydration reaction: utilisation of polyaluminium chloride and polyaluminium ferric chloride to modify phosphogypsum-based excess-sulphate slag cement[J]. Journal of Cleaner Production, 2024, 476: 143712. [25] MURALI G, AZAB M. Recent research in utilization of phosphogypsum as building materials: review[J]. Journal of Materials Research and Technology, 2023, 25: 960-987. [26] COSTA A R D, MATOS S R C, CAMARINI G, et al. Hydration of sustainable ternary cements containing phosphogypsum[J]. Sustainable Materials and Technologies, 2021, 28: e00280. [27] BELLEFQIH H, BOURGIER V, BILAL E, et al. Effect of HPO2-4 and brushite on gypsum reactivity and implications for utilization of phosphogypsum in plaster production[J]. Journal of Cleaner Production, 2024, 451: 142013. [28] ENNACIRI Y, BETTACH M. Procedure to convert phosphogypsum waste into valuable products[J]. Materials and Manufacturing Processes, 2018, 33(16): 1727-1733. [29] SINGH M. Effect of phosphatic and fluoride impurities of phosphogypsum on the properties of selenite plaster[J]. Cement and Concrete Research, 2003, 33(9): 1363-1369. [30] 陈雪梅. 磷建筑石膏在碱性环境中的水化硬化和微结构调控研究[D]. 南京: 东南大学, 2021. CHEN X M. Study on hydration hardening and microstructure regulation of phosphorous building gypsum in alkaline environment[D]. Nanjing: Southeast University, 2021 (in Chinese). [31] LIU S H, FANG P P, REN J, et al. Application of lime neutralised phosphogypsum in supersulfated cement[J]. Journal of Cleaner Production, 2020, 272: 122660. [32] CHEN Q S, SUN S Y, WANG Y M, et al. In-situ remediation of phosphogypsum in a cement-free pathway: utilization of ground granulated blast furnace slag and NaOH pretreatment[J]. Chemosphere, 2023, 313: 137412. [33] WU Y, XU F, WU X T, et al. Retardation mechanism of phosphogypsum in phosphogypsum-based excess-sulfate cement[J]. Construction and Building Materials, 2024, 428: 136293. [34] 杜明霞, 王进明, 董发勤, 等. 磷石膏资源化利用研究进展[J]. 矿产保护与利用, 2020, 40(3): 121-126. DU M X, WANG J M, DONG F Q, et al. Research progress on resource utilization of phosphogypsum[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 121-126 (in Chinese). [35] HAN S, ZHAO Z M, CHENG Y H, et al. On pretreatment experimental study of Yunnan phosphorus building gypsum[J]. Advanced Materials Research, 2014, 1025/1026: 837-841. [36] WANG Z Y, SHUI Z H, SUN T, et al. Reutilization of gangue wastes in phosphogypsum-based excess-sulphate cementitious materials: effects of wet co-milling on the rheology, hydration and strength development[J]. Construction and Building Materials, 2023, 363: 129778. [37] MASHIFANA T P. Chemical treatment of phosphogypsum and its potential application for building and construction[J]. Procedia Manufacturing, 2019, 35: 641-648. [38] LIU S H, WANG L, YU B Y. Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement[J]. Construction and Building Materials, 2019, 214: 9-16. [39] LI X B, ZHANG Q. Dehydration behaviour and impurity change of phosphogypsum during calcination[J]. Construction and Building Materials, 2021, 311: 125328. [40] CAO W X, YI W, LI J, et al. A facile approach for large-scale recovery of phosphogypsum: an insight from its performance[J]. Construction and Building Materials, 2021, 309: 125190. [41] LV X F, XIANG L. Investigating the novel process for thorough removal of eutectic phosphate impurities from phosphogypsum[J]. Journal of Materials Research and Technology, 2023, 24: 5980-5990. [42] MESHRI D T. The modern inorganic fluorochemical industry[J]. Journal of Fluorine Chemistry, 1986, 33(1/2/3/4): 195-226. [43] SINGH M, GARG M, REHSI S S. Purifying phosphogypsum for cement manufacture[J]. Construction and Building Materials, 1993, 7(1): 3-7. [44] 杨皓奇, 武发德, 朱干宇, 等. 天然陈化对磷石膏理化性质的影响及作用机理研究[J]. 新型建筑材料, 2023, 50(5): 99-105. YANG H Q, WU F D, ZHU G Y, et al. The effect and mechanism of natural aging procedure on the physicochemical properties of phosphogypsum[J]. New Building Materials, 2023, 50(5): 99-105 (in Chinese). [45] 胡 腾. 过硫磷石膏矿渣水泥混凝土的改性及应用研究[D]. 武汉: 武汉理工大学, 2019. HU T. Modification and application of excess-sulfate phosphogypsum slag cement and concrete[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). [46] 杨 帆, 许 劲, 陈圣潆, 等. 预处理方式对过硫磷石膏矿渣水泥料浆性能的影响研究[J]. 新型建筑材料, 2024, 51(2): 63-67. YANG F, XU J, CHEN S Y, et al. Effect of pretreatment method on properties of excess-sulfate phosphogypsum slurry[J]. New Building Materials, 2024, 51(2): 63-67 (in Chinese). [47] PARK H, JEONG Y, JUN Y B, et al. Strength enhancement and pore-size refinement in clinker-free CaO-activated GGBFS systems through substitution with gypsum[J]. Cement and Concrete Composites, 2016, 68: 57-65. [48] PENG Z C, ZHOU Y, WANG J W, et al. The impediment and promotion effects and mechanisms of lactates on the hydration of supersulfated cements-Aiming at a performance enhancement[J]. Journal of Cleaner Production, 2022, 341: 130751. [49] GIJBELS K, PONTIKES Y, SAMYN P, et al. Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum[J]. Cement and Concrete Research, 2020, 132: 106054. [50] XING J R, ZHOU Y, PENG Z C, et al. The influence of different kinds of weak acid salts on the macro-performance, micro-structure, and hydration mechanism of the supersulfated cement[J]. Journal of Building Engineering, 2023, 66: 105937. [51] GIJBELS K, NGUYEN H, KINNUNEN P, et al. Feasibility of incorporating phosphogypsum in ettringite-based binder from ladle slag[J]. Journal of Cleaner Production, 2019, 237: 117793. [52] 王紫嫣. 过硫磷石膏矿渣水泥水化硬化性能调控研究[D]. 武汉: 武汉理工大学, 2022. WANG Z Y. Study on the regulation of hydration hardening performance of supersulphated cement with perothion[D]. Wuhan: Wuhan University of Technology, 2022 (in Chinese). [53] SUN T, LI Z W, WANG Z Y, et al. Optimization on hydration efficiency of an all-solid waste binder: carbide slag activated excess-sulphate phosphogypsum slag cement[J]. Journal of Building Engineering, 2024, 86: 108851. [54] 罗晓洪, 张世俊, 郭荣鑫, 等. 电石渣替代水泥作碱激发剂对过硫磷石膏胶凝材料性能和微观结构的影响[J]. 材料导报, 2023, 37(增刊2): 298-304. LUO X H, ZHANG S J, GUO R X, et al. Effect of carbide slag instead of cement as alkali activator on properties and microstructure of excess sulphate phosphogypsum cementitious material[J]. Materials Reports, 2023, 37(supplement 2): 298-304 (in Chinese). [55] 王紫嫣, 水中和, 孙 涛, 等. 高铁钢渣作碱激发剂对过硫磷石膏矿渣凝结硬化性能的影响[J]. 材料导报, 2023, 37(增刊1): 277-283. WANG Z Y, SHUI Z H, SUN T, et al. Steel slag with high iron phase activates excess-sulphate slag cement: effect on the coagulation and strength development[J]. Materials Reports, 2023, 37(supplement 1): 277-283 (in Chinese). [56] OUYANG G S, LI Z W, SUN T, et al. Greener phosphogypsum-based all-solid-waste cementitious binder with steel slag activation: hydration, mechanical properties and durability[J]. Journal of Cleaner Production, 2024, 443: 140996. [57] 李 博. Keggin-Al13调控矿渣水泥水化过程及产物结构机理研究[D]. 武汉: 武汉理工大学, 2020. LI B. Study on Keggin-Al13 regulating hydration process of slag cement and product structure mechanism[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese). [58] GRACIOLI B, ANGULSKI DA LUZ C, BEUTLER C S, et al. Influence of the calcination temperature of phosphogypsum on the performance of supersulfated cements[J]. Construction and Building Materials, 2020, 262: 119961. [59] MATSCHEI T, BELLMANN F, STARK J. Hydration behaviour of sulphate-activated slag cements[J]. Advances in Cement Research, 2005, 17(4): 167-178. [60] 楼宗汉, 徐先宇, 韩 韧, 等. 矿渣水泥中钙矾石形成条件及其作用[J]. 硅酸盐学报, 1981, 9(3): 295-301+376. LOU Z H, XU X Y, HAN R, et al. On the formation and reaction of ettringite in slag cement[J]. Journal of the Chinese Ceramic Society, 1981, 9(3): 295-301+376 (in Chinese). [61] 彭家惠, 楼宗汉. 钙矾石形成机理的研究[J]. 硅酸盐学报, 2000, 28(6): 511-515. PENG J H, LOU Z H. Study on the mechanism of ettringite formation[J]. Journal of the Chinese Ceramic Society, 2000, 28(6): 511-515 (in Chinese). [62] MUN K J, HYOUNG W K, LEE C W, et al. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator[J]. Construction and Building Materials, 2007, 21(6): 1342-1350. [63] 徐 方, 李 恒, 孙 涛, 等. 基于分子动力学模拟的过硫磷石膏矿渣水泥组成设计[J]. 复合材料学报, 2022, 39(6): 2821-2828. XU F, LI H, SUN T, et al. Composition design of excess-sulfate phosphogypsum slag cement based on molecular dynamics simulation[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2821-2828 (in Chinese). [64] MASOUDI R, HOOTON R D. Examining the hydration mechanism of supersulfated cements made with high and low-alumina slags[J]. Cement and Concrete Composites, 2019, 103: 193-203. [65] GRUSKOVNJAK A, LOTHENBACH B, HOLZER L, et al. Hydration of alkali-activated slag: comparison with ordinary Portland cement[J]. Advances in Cement Research, 2006, 18(3): 119-128. [66] WANG Y B, HU Y, HE X Y, et al. Hydration and compressive strength of supersulfated cement with low-activity high alumina ferronickel slag[J]. Cement and Concrete Composites, 2023, 136: 104892. [67] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12): 1232-1243. [68] WANG Z Y, SHUI Z H, SUN T, et al. Recycling utilization of phosphogypsum in eco excess-sulphate cement: synergistic effects of metakaolin and slag additives on hydration, strength and microstructure[J]. Journal of Cleaner Production, 2022, 358: 131901. [69] WANG Z Y, SHUI Z H, SUN T, et al. An eco-friendly phosphogypsum-based cementitious material: performance optimization and enhancing mechanisms[J]. Frontiers in Physics, 2022, 10: 892037. [70] CHEN W, LUO Z P, SUN T, et al. Utilization of high-volume phosphogypsum in artificial aggregate by compaction granulation: effects of muck on physical properties, strength and leaching stability[J]. Journal of Sustainable Cement-Based Materials, 2023, 12(8): 951-961. [71] 陆建鑫. 过硫磷石膏矿渣水泥混凝土的制备与耐久性研究[D]. 武汉: 武汉理工大学, 2013. LU J X. Study on preparation and durability of supersulphated cement concrete with parathion[D]. Wuhan: Wuhan University of Technology, 2013 (in Chinese). [72] XIAO Y, SUN W J, TAN Y Z, et al. Enhancement of phosphogypsum-based solid waste cementitious materials via seawater and metakaolin synergy: strength, microstructure, and environmental benefits[J]. Sustainable Materials and Technologies, 2024, 41: e01029. [73] LIU X, TANG P, CHEN W. Development of an ettringite-based low carbon binder by promoting the nucleation and Ostwald ripening process[J]. Construction and Building Materials, 2024, 427: 136282. [74] CHEN W, LI B, LI Q, et al. Effect of polyaluminum chloride on the properties and hydration of slag-cement paste[J]. Construction and Building Materials, 2016, 124: 1019-1027. [75] 李 博. 聚合铝改性C-A-S-H凝胶结构特性及胶凝能力研究[D]. 武汉: 武汉理工大学, 2016. LI B. Study on structural characteristics and gelling ability of C-A-S-H gel modified by polyaluminum[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese). [76] SCRIVENER K L, TAYLOR H F W. Delayed ettringite formation: a microstructural and microanalytical study[J]. Advances in Cement Research, 1993, 5(20): 139-146. [77] TANG P, WEN J Q, FU Y B, et al. Improving the early-age properties of eco-binder with high volume waste gypsum: hydration process and ettringite formation[J]. Journal of Building Engineering, 2024, 86: 108988. [78] 文嘉祺. 铝相对过硫磷石膏矿渣水泥体系性能提升机制研究[D]. 武汉: 武汉理工大学, 2024. WEN J Q. Study on the mechanism of performance improvement of aluminum relative to excess-sulfate phosphogypsum-slag cement[D]. Wuhan: Wuhan University of Technology, 2024 (in Chinese). [79] LV X D, YANG L, WANG F Z, et al. Hydration, microstructure characteristics, and mechanical properties of high-ferrite Portland cement in the presence of fly ash and phosphorus slag[J]. Cement and Concrete Composites, 2023, 136: 104862. [80] ZHANG K C, SHEN P L, YANG L, et al. Development of high-ferrite cement: toward green cement production[J]. Journal of Cleaner Production, 2021, 327: 129487. [81] EMANUELSON A, HENDERSON E, HANSEN S. Hydration of ferrite Ca2AlFeO5 in the presence of sulphates and bases[J]. Cement and Concrete Research, 1996, 26(11): 1689-1694. [82] HUANG X, HU S G, WANG F Z, et al. Enhanced sulfate resistance: the importance of iron in aluminate hydrates[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6792-6801. [83] NOGUCHI N, SIVENTHIRARAJAH K, CHABAYASHI T, et al. Hydration of ferrite-rich Portland cement: evaluation of Fe-hydrates and Fe uptake in calcium-silicate-hydrates[J]. Construction and Building Materials, 2021, 288: 123142. [84] FUKUHARA M, GOTO S, ASAGA K, et al. Mechanisms and kinetics of C4AF hydration with gypsum[J]. Cement and Concrete Research, 1981, 11(3): 407-414. [85] DILNESA B Z, LOTHENBACH B, RENAUDIN G, et al. Synthesis and characterization of hydrogarnet Ca3(AlxFe1-x)2(SiO4)y(OH)4(3-y)[J]. Cement and Concrete Research, 2014, 59: 96-111. [86] DILNESA B Z, WIELAND E, LOTHENBACH B, et al. Fe-containing phases in hydrated cements[J]. Cement and Concrete Research, 2014, 58: 45-55. [87] MÖSCHNER G, LOTHENBACH B, WINNEFELD F, et al. Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1-xFex(OH)6] 2(SO4)3·26H2O)[J]. Cement and Concrete Research, 2009, 39(6): 482-489. [88] GIJBELS K, NGUYEN H, KINNUNEN P, et al. Radiological and leaching assessment of an ettringite-based mortar from ladle slag and phosphogypsum[J]. Cement and Concrete Research, 2020, 128: 105954. [89] CODY A M, LEE H, CODY R D, et al. The effects of chemical environment on the nucleation, growth, and stability of ettringite[Ca3Al(OH)6] 2(SO4)3·26H2O[J]. Cement and Concrete Research, 2004, 34(5): 869-881. [90] WAN D W, ZHANG W Q, TAO Y, et al. The impact of Fe dosage on the ettringite formation during high ferrite cement hydration[J]. Journal of the American Ceramic Society, 2021, 104(7): 3652-3664. [91] MÖSCHNER G, LOTHENBACH B, ROSE J, et al. Solubility of fe-ettringite (Ca6[Fe(OH)6] 2(SO4)3·26H2O)[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 1-18. [92] WANG Z Y, SUN T, OUYANG G S, et al. Role of polyferric sulphate in hydration regulation of phosphogypsum-based excess-sulphate slag cement: a multiscale investigation[J]. Science of the Total Environment, 2024, 948: 173750. [93] 郑俊杰, 黄 赟, 水中和, 等. 过硫磷石膏矿渣水泥混凝土抗氯离子渗透性能的研究[J]. 新型建筑材料, 2015, 42(10): 29-33. ZHENG J J, HUANG Y, SHUI Z H, et al. Chloride ion permeability of excessive-sulfate phosphogypsum-slag-cement ternary blended concrete[J]. New Building Materials, 2015, 42(10): 29-33 (in Chinese). [94] 丁 沙. 过硫磷石膏矿渣水泥混凝土抗海盐侵蚀性能与机理研究[D]. 武汉: 武汉理工大学, 2014. DING S. Study on the anti-sea salt corrosion performance and mechanism of supersulphated cement concrete with parathion[D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese). [95] WANG Z Y, SHUI Z H, LI Z W, et al. Hydration characterization of Mg2+ blended excess-sulphate phosphogypsum slag cement system during early age[J]. Construction and Building Materials, 2022, 345: 128191. [96] WANG Z Y, OUYANG G S, LI Z W, et al. Excess-sulphate phosphogypsum slag cement blended with magnesium ion: part Ⅱ-the long-term microstructure characterisation and phase evolution[J]. Construction and Building Materials, 2024, 431: 136513. [97] XIE Y F, SUN T, SHUI Z H, et al. The impact of carbonation at different CO2 concentrations on the microstructure of phosphogypsum-based supersulfated cement paste[J]. Construction and Building Materials, 2022, 340: 127823. [98] 殷小川. 磷石膏基水泥组成与性能的研究[D]. 武汉: 武汉理工大学, 2011. YIN X C. Study on composition and properties of phosphogypsum-based cement[D]. Wuhan: Wuhan University of Technology, 2011 (in Chinese). [99] WANG Z Y, SHUI Z H, SUN T, et al. Effect of MgO and superfine slag modification on the carbonation resistance of phosphogypsum-based cementitious materials: based on hydration enhancement and phase evolution regulation[J]. Construction and Building Materials, 2024, 415: 134914. |
| [1] | ZHANG Xiuze, HUANG Min, HUANG Muyang, LI Mengke, GE Chuyi, LIAO Xianqing, BAO Shenxu. Preparation and Mechanism of Thermal Activation Shield Muck-Based Ceramsite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1556-1565. |
| [2] | SU Zhuangfei, CHENG Yao, LIU Ze. Macroscopic Properties and Microscopic Properties of Slag-Modified Alkali-Activated Silicon-Manganese SlagCementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1276-1287. |
| [3] | YIN Yuan, LIN Kang, ZENG Weixin, CHENG Shufan. Experimental Study on Road Performance of Weak Alkali-Activated Phosphorus Slag-Cement Composite Filler [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2602-2611. |
| [4] | PEI Junjun, YUAN Bowen, GAO Min, GUO Qilong, LIN Zhenghong, HEI Yameng. Properties of Multi-Component Composite Cementitious System of Regenerated Micropowder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1812-1821. |
| [5] | REN Beibei, LIU Yaxin, HUANG Xin, WANG Ting, WANG Na, JIANG Hong, XIONG Chunrong, HAO Hongxun. Research Progress of Li2O-Al2O3-SiO2 System Glass-Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1181-1196. |
| [6] | LIU Yang, XIAO Xinxin, CHEN Xiang, WANG Bowen, LUO Dong, LU Naiwei. Effect of Carbide Slag on Carbonation Resistance of Alkali-Activated Fly Ash-Slag [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3204-3211. |
| [7] | AN Sai, WANG Baomin, CHEN Wenxiu, WANG Xiaojun. Performance and Action Mechanism of Slag-Carbide Slag Based Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(11): 3996-4005. |
| [8] | XU Wei, LU Ya, LIU Songbai, XIAO Min, CHEN Zhongfa, WEI Qi, YAN Jun. Mechanism of Copper Tailings Cured Bricks by Alkali Activation-Carbonated Conservation [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(1): 188-195. |
| [9] | LI Xianzi, WANG Yanhang, HAN Tao, YANG Penghui, SHI Xiaofei, HE Kun, ZU Chengkui. Research Progress of High-Strength Glass Components [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(4): 1113-1123. |
| [10] | ZHAO Lijie, ZHANG Tong, HUANG Wei, SU Zhuangfei, LIU Ze. Preparation and Properties of Coal Gasification Coarse Slag-Blast Furnace Slag Based Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(10): 3542-3547. |
| [11] | GONG Jianqing, LI Falei, LI Ke, QU Zhigang. Effects of Active Admixtures on Comprehensive Properties of Epoxy Resin Repair Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(4): 1137-1146. |
| [12] | ZHANG Jixu, WANG Wenguang, LI Jinquan, HAN Jie. Research Progress of Carbon Nanotubes Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 714-722. |
| [13] | XU Xianqing, BAO Shenxu, ZHANG Yimin, LUO Yongpeng. Preparation and Performance of Polymer Based on Shale Vanadium Extraction Tailings [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(11): 3668-3676. |
| [14] | CHEN Shi-guo;WANG Qun-ying;YING Guang-wei;SONG Ming-guang;WEI Ya-juan;LI Yong-hui;NINOMIYA Yoshihiko. Influence of NaOH Dosage on Strength of CFBC Fly Ash Based Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(10): 3362-3366. |
| [15] | WANG Jing;ZHANG Yao-jun;WANG Ya-chao. Preparation of Fly Ash and Slag Based Geopolymer Toughened by Asphalt and Polypropylene Fiber [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2013, 32(7): 1432-1437. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||