硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 177-190.DOI: 10.16552/j.cnki.issn1001-1625.2025.0670
周烨来(
), 马慧博, 张世栋, 赵祥麟, 朱纯, 孔海涛, 李宝让(
)
收稿日期:2025-07-09
修订日期:2025-08-15
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
李宝让,博士,教授。E-mail:libr@ncepu.edu.cn
作者简介:周烨来(2001—),男,硕士研究生。主要从事钢渣基固废材料的研究。E-mail:1327871935@qq.com
基金资助:
ZHOU Yelai(
), MA Huibo, ZHANG Shidong, ZHAO Xianglin, ZHU Chun, KONG Haitao, LI Baorang(
)
Received:2025-07-09
Revised:2025-08-15
Published:2026-01-20
Online:2026-02-10
摘要:
本文针对钢渣(SS)基蓄热水泥,设计了一种含氟复合激发剂(Na2SiO3·9H2O/Na2SO4/K2SO4/KF),并将其分别应用于钢渣-硅酸盐水泥(PC)、钢渣-铝酸盐水泥(CAC)和钢渣-硫铝酸盐水泥(CSA)三种胶凝体系的活化研究。通过调控激发剂的掺量,系统考察其对材料抗压强度、热导率及比热容的影响,并结合XRD、TG-DTG及SEM等手段分析作用机理。结果表明,激发剂提供的碱性环境能有效促进钢渣-水泥体系中矿物相的解聚,而F-的引入抑制了钙矾石(AFt)与水化铝酸钙的生成。在该激发剂的复合作用下,解聚形成的[Al(OH)4]-与[H2SiO4]2-更倾向于生成富铝的水化硅铝酸钙(C-A-S-H)凝胶,过量的[Al(OH)4]-最终转化为Al(OH)3。这些更致密的水化产物显著改善了浆体的力学性能与热物理性能,使三种体系的综合性能达到甚至优于纯水泥浆体的水平。其中,钢渣-硅酸盐水泥和钢渣-铝酸盐水泥体系在3%(质量分数)激发剂掺量时表现出较好的综合性能;而激发剂过量可能引发Al(OH)3与F-反应,抑制钢渣-铝酸盐水泥浆体的强度发展。本研究揭示了含氟复合激发剂在钢渣基蓄热水泥中的作用机制,为钢渣资源化利用及高性能蓄热水泥的设计提供了参考。
中图分类号:
周烨来, 马慧博, 张世栋, 赵祥麟, 朱纯, 孔海涛, 李宝让. 含氟复合激发剂对钢渣基蓄热水泥水化产物及性能的影响[J]. 硅酸盐通报, 2026, 45(1): 177-190.
ZHOU Yelai, MA Huibo, ZHANG Shidong, ZHAO Xianglin, ZHU Chun, KONG Haitao, LI Baorang. Effect of Fluorine-Containing Composite Activator on Hydration Products and Properties of Steel Slag-Based Thermal Storage Cement[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 177-190.
| Cement | Specific surface area/(m2·kg-1) | Initial setting time/min | Final setting time/min | Density/ (g·cm-3) | Loss on ignition/% | Boiling test |
|---|---|---|---|---|---|---|
| PC | ≥360 | ≥175 | ≤235 | 3.00~3.15 | ≤4 | Passed |
| CAC | ≥300 | ≥30 | ≤180 | 3.20~3.25 | ≤3 | Passed |
| CSA | ≥350 | ≤25 | ≥180 | 2.80~3.15 | ≤5 | Passed |
表1 水泥的基本性质
Table 1 Basic properties of cement
| Cement | Specific surface area/(m2·kg-1) | Initial setting time/min | Final setting time/min | Density/ (g·cm-3) | Loss on ignition/% | Boiling test |
|---|---|---|---|---|---|---|
| PC | ≥360 | ≥175 | ≤235 | 3.00~3.15 | ≤4 | Passed |
| CAC | ≥300 | ≥30 | ≤180 | 3.20~3.25 | ≤3 | Passed |
| CSA | ≥350 | ≤25 | ≥180 | 2.80~3.15 | ≤5 | Passed |
| Material | Mass fraction/% | |||||
|---|---|---|---|---|---|---|
| CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | |
| SS | 44.50 | 16.43 | 5.65 | 20.20 | 5.58 | 6.27 |
| PC | 51.91 | 24.42 | 8.47 | 3.71 | 4.27 | 4.67 |
| CAC | 33.27 | 9.90 | 49.39 | 2.42 | 0.69 | 1.12 |
| CSA | 55.96 | 10.00 | 13.87 | 2.51 | 3.14 | 10.83 |
表2 钢渣与水泥的主要化学成分
Table 2 Main chemical components of steel slag and cement
| Material | Mass fraction/% | |||||
|---|---|---|---|---|---|---|
| CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | |
| SS | 44.50 | 16.43 | 5.65 | 20.20 | 5.58 | 6.27 |
| PC | 51.91 | 24.42 | 8.47 | 3.71 | 4.27 | 4.67 |
| CAC | 33.27 | 9.90 | 49.39 | 2.42 | 0.69 | 1.12 |
| CSA | 55.96 | 10.00 | 13.87 | 2.51 | 3.14 | 10.83 |
| Sample | Mass/g | |||||
|---|---|---|---|---|---|---|
| SS | PC | CAC | CSA | Activator | Water | |
| SS | 100 | 0 | 0 | 0 | 0 | 40 |
| G0 | 0 | 100 | 0 | 0 | 0 | 40 |
| A0 | 0 | 0 | 100 | 0 | 0 | 40 |
| L0 | 0 | 0 | 0 | 100 | 0 | 40 |
| G6 | 60 | 40 | 0 | 0 | 0 | 40 |
| A6 | 60 | 0 | 40 | 0 | 0 | 40 |
| L6 | 60 | 0 | 0 | 40 | 0 | 40 |
| Gj1 | 60 | 40 | 0 | 0 | 2 | 40 |
| Gj2 | 60 | 40 | 0 | 0 | 3 | 40 |
| Gj3 | 60 | 40 | 0 | 0 | 4 | 40 |
| Gj4 | 60 | 40 | 0 | 0 | 5 | 40 |
| Aj1 | 60 | 0 | 40 | 0 | 2 | 40 |
| Aj2 | 60 | 0 | 40 | 0 | 3 | 40 |
| Aj3 | 60 | 0 | 40 | 0 | 4 | 40 |
| Aj4 | 60 | 0 | 40 | 0 | 5 | 40 |
| Lj1 | 60 | 0 | 0 | 40 | 2 | 40 |
| Lj2 | 60 | 0 | 0 | 40 | 3 | 40 |
| Lj3 | 60 | 0 | 0 | 40 | 4 | 40 |
| Lj4 | 60 | 0 | 0 | 40 | 5 | 40 |
表3 水泥浆体的配合比
Table 3 Mix proportion of cement pastes
| Sample | Mass/g | |||||
|---|---|---|---|---|---|---|
| SS | PC | CAC | CSA | Activator | Water | |
| SS | 100 | 0 | 0 | 0 | 0 | 40 |
| G0 | 0 | 100 | 0 | 0 | 0 | 40 |
| A0 | 0 | 0 | 100 | 0 | 0 | 40 |
| L0 | 0 | 0 | 0 | 100 | 0 | 40 |
| G6 | 60 | 40 | 0 | 0 | 0 | 40 |
| A6 | 60 | 0 | 40 | 0 | 0 | 40 |
| L6 | 60 | 0 | 0 | 40 | 0 | 40 |
| Gj1 | 60 | 40 | 0 | 0 | 2 | 40 |
| Gj2 | 60 | 40 | 0 | 0 | 3 | 40 |
| Gj3 | 60 | 40 | 0 | 0 | 4 | 40 |
| Gj4 | 60 | 40 | 0 | 0 | 5 | 40 |
| Aj1 | 60 | 0 | 40 | 0 | 2 | 40 |
| Aj2 | 60 | 0 | 40 | 0 | 3 | 40 |
| Aj3 | 60 | 0 | 40 | 0 | 4 | 40 |
| Aj4 | 60 | 0 | 40 | 0 | 5 | 40 |
| Lj1 | 60 | 0 | 0 | 40 | 2 | 40 |
| Lj2 | 60 | 0 | 0 | 40 | 3 | 40 |
| Lj3 | 60 | 0 | 0 | 40 | 4 | 40 |
| Lj4 | 60 | 0 | 0 | 40 | 5 | 40 |
| Sample | G6 | Gj1 | A6 | Aj1 | L6 | Lj1 |
|---|---|---|---|---|---|---|
| Mass loss rate (50~200 ℃)/% | 3.61 | 4.14 | 7.59 | 5.46 | 6.36 | 4.22 |
| Mass loss rate (200~300 ℃)/% | 0.84 | 0.93 | 2.91 | 3.28 | 1.64 | 1.49 |
| Mass loss rate (410~470 ℃)/% | 0.52 | 0.60 | 0.33 | 0.47 | 0.38 | 0.37 |
| Mass loss rate (600~800 ℃)/% | 2.69 | 4.46 | 1.09 | 3.22 | 5.81 | 8.31 |
表4 不同温度范围下样品的质量损失率
Table 4 Mass loss rate of samples under different temperature ranges
| Sample | G6 | Gj1 | A6 | Aj1 | L6 | Lj1 |
|---|---|---|---|---|---|---|
| Mass loss rate (50~200 ℃)/% | 3.61 | 4.14 | 7.59 | 5.46 | 6.36 | 4.22 |
| Mass loss rate (200~300 ℃)/% | 0.84 | 0.93 | 2.91 | 3.28 | 1.64 | 1.49 |
| Mass loss rate (410~470 ℃)/% | 0.52 | 0.60 | 0.33 | 0.47 | 0.38 | 0.37 |
| Mass loss rate (600~800 ℃)/% | 2.69 | 4.46 | 1.09 | 3.22 | 5.81 | 8.31 |
| [1] | 李宝让, 马慧博, 赵旭章, 等. 钢渣固废蓄热技术及其潜在的应用技术研究[J]. 材料导报, 2023, 37(14): 188-205. |
| LI B R, MA H B, ZHAO X Z, et al. Investigations on solid waste steel slag and its potential applied technology in heat storage: a review[J]. Materials Reports, 2023, 37(14): 188-205 (in Chinese). | |
| [2] |
AGALIT H, ZARI N, MAAROUFI M. Suitability of industrial wastes for application as high temperature thermal energy storage (TES) materials in solar tower power plants: a comprehensive review[J]. Solar Energy, 2020, 208: 1151-1165.
DOI URL |
| [3] | 何百灵. 太阳能热电站用混凝土储热材料的制备与性能[D]. 武汉: 武汉理工大学, 2012: 5-7. |
| HE B L. Preparation and performances investigation of thermal storage material in solar thermal power plants[D] Wuhan: Wuhan University of Technology, 2012: 5-7 (in Chinese). | |
| [4] |
HERRMANN U, KEARNEY D W. Survey of thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 145-152.
DOI URL |
| [5] |
KOCAK B, FERNANDEZ A I, PAKSOY H. Benchmarking study of demolition wastes with different waste materials as sensible thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 219: 110777.
DOI URL |
| [6] |
WANG S Y, ABDULRIDHA A, BRAVO J, et al. Thermal energy storage in concrete: review, testing, and simulation of thermal properties at relevant ranges of elevated temperature[J]. Cement and Concrete Research, 2023, 166: 107096.
DOI URL |
| [7] |
ALONSO M C, VERA-AGULLO J, GUERREIRO L, et al. Calcium aluminate based cement for concrete to be used as thermal energy storage in solar thermal electricity plants[J]. Cement and Concrete Research, 2016, 82: 74-86.
DOI URL |
| [8] |
RASHID F, AL-OBAIDI M, DULAIMI A, et al. A review of recent improvements, developments, effects, and challenges on using phase-change materials in concrete for thermal energy storage and release[J]. Journal of Composites Science, 2023, 7(9): 352.
DOI URL |
| [9] | 李圆圆. 太阳能热发电用储热混凝土的制备与储热单元模拟分析[D]. 武汉: 武汉理工大学, 2008: 52-53. |
| LI Y Y. Preparing of concrete heat storage materials for solar thermal power plants and simulating of the heat store unit[D]. Wuhan: Wuhan University of Technology, 2008: 52-53 (in Chinese). | |
| [10] | 李 斌. 钢渣蓄热砂浆热稳定性能研究[D]. 乌鲁木齐: 新疆农业大学, 2021: 68-69. |
| LI B. Research on thermal stability of steel slag thermal storage mortar[D]. Urumqi: Xinjiang Agricultural University, 2021: 68-69 (in Chinese). | |
| [11] |
DINGA C, WEN Z G. Many-objective optimization of energy conservation and emission reduction in China’s cement industry[J]. Applied Energy, 2021, 304: 117714.
DOI URL |
| [12] | 周跃男, 郑永超, 张 艺, 等. 钢渣活性评价及激发方法的研究进展[J/OL]. 宁夏大学学报(自然科学版), 2024: 1-6 ( 2024-06-21) [ 2025-07-08]. https://doi.org/10.20176/j.cnki.nxdz.000025. |
| ZHOU Y N, ZHENG Y C, ZHANG Y, et al. Research progress on activity evaluation and activation methods of steel slag[J/OL]. Journal of Ningxia University (Natural Science Edition), 2024: 1-6 ( 2024-06-21) [ 2025-07-08]. https://doi.org/10.20176/j.cnki.nxdz.000025 (in Chinese). | |
| [13] |
DENG W, XIONG R, ZHAI X M, et al. Activation technology of steel slag for concrete exposed to plateau climate: a state-of-the-art review[J]. Environmental Science and Pollution Research International, 2024, 31(44): 55917-55934.
DOI |
| [14] |
HUO B B, LI B L, HUANG S Y, et al. Hydration and soundness properties of phosphoric acid modified steel slag powder[J]. Construction and Building Materials, 2020, 254: 119319.
DOI URL |
| [15] |
HUO B B, LI B L, CHEN C, et al. Surface etching and early age hydration mechanisms of steel slag powder with formic acid[J]. Construction and Building Materials, 2021, 280: 122500.
DOI URL |
| [16] |
CHANG L, LIU H, WANG J F, et al. Effect of chelation via ethanol-diisopropanolamine on hydration of pure steel slag[J]. Construction and Building Materials, 2022, 357: 129372.
DOI URL |
| [17] | 常 磊, 黄炳银, 王剑锋, 等. 三乙醇胺络合作用下钢渣的水化特性[J]. 硅酸盐学报, 2024, 52(5): 1621-1630. |
| CHANG L, HUANG B Y, WANG J F, et al. Hydration characteristics of steel slag under complexing of triethanolamine[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1621-1630 (in Chinese). | |
| [18] |
ZHU J W, CUI H Z, CUI L Z, et al. Mutual activation mechanism of cement-GGBS-steel slag ternary system excited by sodium sulfate[J]. Buildings, 2024, 14(3): 631.
DOI URL |
| [19] | 王 毓, 张长森, 吴发红, 等. 不同激发剂对钢渣活性及水泥强度的影响[J]. 混凝土与水泥制品, 2018(4): 7-11. |
| WANG Y, ZHANG C S, WU F H, et al. The influence of different activator on activity of steel slag and strength of cement[J]. China Concrete and Cement Products, 2018(4): 7-11 (in Chinese). | |
| [20] |
LI M H, LU Y J, YANG S L, et al. Study on the early effect of excitation method on the alkaline steel slag[J]. Sustainability, 2023, 15(6): 4714.
DOI URL |
| [21] |
ZHANG S F, NIU D T. Hydration and mechanical properties of cement-steel slag system incorporating different activators[J]. Construction and Building Materials, 2023, 363: 129981.
DOI URL |
| [22] | 张 浩, 王 林, 龙红明. 碱激发剂对钢渣胶凝材料抗压强度的影响[J]. 过程工程学报, 2018, 18(2): 382-386. |
|
ZHANG H, WANG L, LONG H M. Effect of alkali-activator on compressive strength of steel slag cementations materials[J]. The Chinese Journal of Process Engineering, 2018, 18(2): 382-386 (in Chinese).
DOI |
|
| [23] |
YANG J, LIU L, ZHANG G Z, et al. The preparation of ground blast furnace slag-steel slag pavement concrete using different activators and its performance investigation[J]. Buildings, 2023, 13(7): 1590.
DOI URL |
| [24] | 孙 凯, 陶 丽, 李 莉, 等. 用于喷射混凝土的低碱性速凝剂研究[J]. 混凝土, 2005(2): 59-62. |
| SUN K, TAO L, LI L, et al. Research on the low-alkali accelerating admixture for shotcrete[J]. Concrete, 2005(2): 59-62 (in Chinese). | |
| [25] | 郭成洲. 氟、磷对硅酸盐水泥熟料矿物水化过程影响机理研究[D]. 武汉: 武汉理工大学, 2012: 28-39, 50-52. |
| GUO C Z. Effect mechanism of fluorine and phosphorus on hydration process of cement clinker[D] Wuhan: Wuhan University of Technology, 2012: 28-39, 50-52 (in Chinese). | |
| [26] |
ZHUANG S Y, WANG Q, SHAN Y C, et al. New insights into the retardation mechanism of phosphorus slag on the early cement hydration[J]. Cement and Concrete Composites, 2025, 158: 105963.
DOI URL |
| [27] | 陈 霞, 杨华全, 张建峰. 磷酸盐和氟盐对水泥凝结特性的影响及作用机理[J]. 长江科学院院报, 2015, 32(12): 109-113. |
|
CHEN X, YANG H Q, ZHANG J F. Influence of phosphate and fluoride on cement setting and its working mechanism[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(12): 109-113 (in Chinese).
DOI |
|
| [28] |
NIKOLIĆ I, DRINČIĆ A, DJUROVIĆ D, et al. Kinetics of electric arc furnace slag leaching in alkaline solutions[J]. Construction and Building Materials, 2016, 108: 1-9.
DOI URL |
| [29] | 石马刚, 柯国军, 邹品玉, 等. 碱-矿渣水泥的水化、力学及干缩性能研究进展[J]. 硅酸盐通报, 2022, 41(1): 162-173+191. |
| SHI M G, KE G J, ZOU P Y, et al. Research progress of hydration, mechanical and dry shrinkage properties of alkali-activated slag cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 162-173+191 (in Chinese). | |
| [30] |
MESECKE K, WARR L N, MALORNY W. Structure modeling and quantitative X-ray diffraction of C-(A)-S-H[J]. Journal of Applied Crystallography, 2022, 55(1): 133-143.
DOI URL |
| [31] | RICHARDSON I G. Model structures for C-(A)-S-H(I)[J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2014, 70(6): 903-923. |
| [32] |
ANTONOVIČ V, KERIENĖ J, BORIS R, et al. The effect of temperature on the formation of the hydrated calcium aluminate cement structure[J]. Procedia Engineering, 2013, 57: 99-106.
DOI URL |
| [33] |
PASTOR C, FERNÁNDEZ-JIMÉNEZ A, VÁZQUEZ T, et al. Calcium aluminate cement hydration in a high alkalinity environment[J]. Materiales de Construcción, 2009, 59(293): 21-34.
DOI URL |
| [34] | 李 娟. 高贝利特硫铝酸盐水泥的研究[D]. 武汉: 武汉理工大学, 2013: 8-10. |
| LI J. Study on high belite-sulphoaluminate cement[D]. Wuhan: Wuhan University of Technology, 2013: 8-10 (in Chinese). | |
| [35] |
SEO J, NAWAZ A, JANG J G, et al. Modifications in hydration kinetics and characteristics of calcium aluminate cement upon blending with calcium sulfoaluminate cement[J]. Construction and Building Materials, 2022, 342: 127958.
DOI URL |
| [36] |
FALZONE G, BALONIS M, SANT G. X-AFm stabilization as a mechanism of bypassing conversion phenomena in calcium aluminate cements[J]. Cement and Concrete Research, 2015, 72: 54-68.
DOI URL |
| [37] |
BAQUERIZO L G, MATSCHEI T, SCRIVENER K L, et al. Hydration states of AFm cement phases[J]. Cement and Concrete Research, 2015, 73: 143-157.
DOI URL |
| [38] | 曾春明, 曾智科, 修 杨, 等. 掺合料复配和激发剂改性对水泥基材料性能的影响[J]. 江西建材, 2018(5): 10-12. |
| ZENG C M, ZENG Z K, XIU Y, et al. Effect of admixture compound and activator modification on the properties of cement based materials[J]. Jiangxi Building Materials, 2018(5): 10-12 (in Chinese). | |
| [39] | ELENA J, LUCIA M D. X-ray diffraction study of hydration processes in the Portland cement[J]. Journal of Applied Engineering Science, 2011, 1(1): 79-86. |
| [40] | 张德成, 肖传明, 张云飞, 等. 外加剂对硫铝酸盐水泥的影响[J]. 硅酸盐通报, 2007, 26(4): 816-820. |
| ZHANG D C, XIAO C M, ZHANG Y F, et al. Influence of admixtures on sulfoaluminat concrete structure and performance[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(4): 816-820 (in Chinese). | |
| [41] | 马继树, 杨淑雁. 西北大温差环境下温度对硫铝酸盐水泥砂浆抗压强度的影响[J]. 硅酸盐通报, 2024, 43(4): 1388-1397. |
| MA J S, YANG S Y. Effect of temperature on compressive strength of sulphoaluminate cement mortar in large temperature difference of northwest China[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(4): 1388-1397 (in Chinese). | |
| [42] |
WANG D L, NA Q, LIU Y K, et al. Hydration process and fluoride solidification mechanism of multi-source solid waste-based phosphogypsum cemented paste backfill under CaO modification[J]. Cement and Concrete Composites, 2024, 154: 105804.
DOI URL |
| [43] |
SAKHARE N, LUNGE S, RAYALU S, et al. Defluoridation of water using calcium aluminate material[J]. Chemical Engineering Journal, 2012, 203: 406-414.
DOI URL |
| [1] | 安仰壮, 俞海, 刘昌庚. 基于数字图像相关的玄武岩纤维泡沫混凝土压缩损伤研究[J]. 硅酸盐通报, 2026, 45(1): 92-102. |
| [2] | 刘仕琪, 周紫晨, 黄修林, 曾明, 张冰, 张剑峰, 沈春华. 燃煤渣对水泥力学和水化过程的影响[J]. 硅酸盐通报, 2026, 45(1): 165-176. |
| [3] | 杨兆宁, 张端, 孙博学, 高峰, 李小青, 聂祚仁, 崔素萍. 路面水泥混凝土碳汇环境效益的时滞分析与动态核算[J]. 硅酸盐通报, 2026, 45(1): 30-39. |
| [4] | 周宇通, 周正, 裘吕超, 鲁旷达, 徐冬梅, 张士元, 张世轩, 蹇守卫, 谭洪波. 发泡压力对超轻质硫氧镁水泥基泡沫混凝土性能的影响[J]. 硅酸盐通报, 2026, 45(1): 103-111. |
| [5] | 黄振辉, 赵菲, 常钧, 李文政, 周智. CO2养护椰壳炭再生混凝土的力学性能和固碳能力[J]. 硅酸盐通报, 2026, 45(1): 156-164. |
| [6] | 王文胜, 吕海龙, 马江涛, 刘琦, 聂晓东. 珊瑚混凝土基础力学性能及工程应用研究现状[J]. 硅酸盐通报, 2026, 45(1): 1-20. |
| [7] | 雷进生, 谭嘉伟, 史晓宇, 雷俊杰, 刘金鑫. 含营养骨料生态混凝土的养分缓释性能试验研究[J]. 硅酸盐通报, 2026, 45(1): 133-144. |
| [8] | 唐咸远, 任博文, 胡冰倩, 柳大成, 冯美杰. 超早强环保型钢渣微粉UHPC制备及形成机理[J]. 硅酸盐通报, 2026, 45(1): 191-201. |
| [9] | 何兆益, 邹萌, 姚启文, 曹东伟, 秦猛. 高掺量磷石膏-水泥-固化剂稳定碎石基层材料的性能及强度形成机理[J]. 硅酸盐通报, 2026, 45(1): 346-358. |
| [10] | 梁新星, 张敬申, 王朝胜, 梁李归祖, 刘泽, 张通, 朱颖灿. 预养护对硅钙渣复合蒸压加气混凝土宏观性能与微观结构的影响[J]. 硅酸盐通报, 2026, 45(1): 40-46. |
| [11] | 李彤, 王庆贺, 张逸超. 冻融循环作用下相变混凝土温度响应及热力场调控机理研究[J]. 硅酸盐通报, 2026, 45(1): 69-80. |
| [12] | 金清平, 杨振远, 梁颖强, 刘运蝶, 宋仕娥. 氯盐环境下GFRP筋-海砂混凝土深受弯构件承载性能研究[J]. 硅酸盐通报, 2026, 45(1): 81-91. |
| [13] | 梁其旻, 王喆, 梅英杰, 孙奥, 李鹏飞. 基于CatBoost优化算法的自密实混凝土工作性预测[J]. 硅酸盐通报, 2025, 44(9): 3178-3187. |
| [14] | 邱军付, 张瑞峰, 贺鑫鑫, 赵宇翔, 胡家磊, 李雅曦. 热处理温度和放置时间对建筑垃圾分离渣土活性影响的机理研究[J]. 硅酸盐通报, 2025, 44(9): 3355-3366. |
| [15] | 义启贵, 湛缕金, 刘祥, 许瑞天, 梁莹, 陈宗平. 碳酸氢钠溶液碳化:一种提高再生骨料混凝土性能的新方法[J]. 硅酸盐通报, 2025, 44(9): 3227-3237. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||