欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 156-164.DOI: 10.16552/j.cnki.issn1001-1625.2025.0724

• 资源综合利用 • 上一篇    下一篇

CO2养护椰壳炭再生混凝土的力学性能和固碳能力

黄振辉1(), 赵菲1,2(), 常钧1,2, 李文政1,2, 周智1,2   

  1. 1.海南大学土木建筑工程学院,海口 570228
    2.海南大学热带海洋工程材料及评价全国重点实验室,海口 570228
  • 收稿日期:2025-07-24 修订日期:2025-08-25 出版日期:2026-01-20 发布日期:2026-02-10
  • 通信作者: 赵 菲,博士,副教授。E-mail:zhaofei@hainanu.edu.cn
  • 作者简介:黄振辉(1998—),男,硕士研究生。主要从事再生混凝土的研究。E-mail:15270643844@163.com
  • 基金资助:
    海南省自然科学基金高层次人才项目(520RC549)

Mechanical Properties and Carbon Sequestration Capacity of CO2-Cured Recycled Aggregate Concrete Incorporating Coconut Shell Biochar

HUANG Zhenhui1(), ZHAO Fei1,2(), CHANG Jun1,2, LI Wenzheng1,2, ZHOU Zhi1,2   

  1. 1. School of Civil Engineering and Architecture,Hainan University,Haikou 570228,China
    2. State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation,Hainan University,Haikou 570228,China
  • Received:2025-07-24 Revised:2025-08-25 Published:2026-01-20 Online:2026-02-10

摘要:

为应对建筑垃圾回收与混凝土行业碳封存的双重挑战,本研究采用CO2矿化再生粗骨料和椰壳炭作为天然骨料的可持续替代材料,系统研究了再生粗骨料(质量取代率0%~100%)与椰壳炭(体积取代率0%~30%)对CO2养护再生混凝土力学性能、固碳能力及微观结构的影响。结果表明,最优配合比(0%再生粗骨料+20%椰壳炭)混凝土的抗压强度达到42.1 MPa(较正常养护的对照组试件提升38.0%),劈裂抗拉强度达到3.86 MPa(提升23.7%)。这归因于椰壳炭的多级孔隙结构能调控水分促进二次水化反应,并加速CO2扩散驱动CaCO3致密化。通过热重分析、傅里叶变换红外光谱和扫描电子显微镜等多尺度表征发现,当椰壳炭取代率为20%时,既能有效促进CaCO3的多晶型转化,又能较好维持水化硅酸钙(C-S-H)的稳定性,使碳封存能力提升100%。本研究通过协同废弃物资源化与CO2利用,为开发高性能低碳混凝土提供了有效方案,对可持续建筑实践具有重要价值。

关键词: 椰壳炭, 再生混凝土, CO2养护, 力学性能, 矿化程度

Abstract:

To address the dual challenges of construction waste recycling and carbon sequestration in the concrete industry, this study employed CO2-mineralized recycled coarse aggregates (RCA) and coconut shell biochar (CSB) as sustainable substitutes for natural aggregates. The effects of RCA (0% to 100% by mass replacement) and CSB (0% to 30% by volume replacement) on the mechanical properties, carbon sequestration capacity, and microstructure of CO2-cured recycled aggregate concrete were systematically investigated. Results indicate that the concrete with optimal mixture (0% RCA + 20% CSB) achieves a compressive strength of 42.1 MPa (a 38.0% increase compared to the control group with normal curing) and a splitting tensile strength of 3.86 MPa (a 23.7% improvement). This enhancement is attributed to the hierarchical pore structure of CSB, which regulates moisture to promote secondary hydration and facilitates CO2 diffusion, thereby driving the densification of CaCO3. Multiscale characterization via thermogravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy reveals that a 20% CSB substitution rate not only promotes the polymorphic transformation of CaCO3 but also maintains the stability of calcium silicate hydrate (C-S-H), resulting in a 100% increase in carbon sequestration capacity. This study demonstrates a synergistic approach to waste valorization and CO2 utilization, offering an effective strategy for developing high-performance, low-carbon concrete with significant implications for sustainable construction practices.

Key words: coconut shell biochar, recycled aggregate concrete, CO2 curing, mechanical property, degree of mineralization

中图分类号: