硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 156-164.DOI: 10.16552/j.cnki.issn1001-1625.2025.0724
黄振辉1(
), 赵菲1,2(
), 常钧1,2, 李文政1,2, 周智1,2
收稿日期:2025-07-24
修订日期:2025-08-25
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
赵 菲,博士,副教授。E-mail:zhaofei@hainanu.edu.cn
作者简介:黄振辉(1998—),男,硕士研究生。主要从事再生混凝土的研究。E-mail:15270643844@163.com
基金资助:
HUANG Zhenhui1(
), ZHAO Fei1,2(
), CHANG Jun1,2, LI Wenzheng1,2, ZHOU Zhi1,2
Received:2025-07-24
Revised:2025-08-25
Published:2026-01-20
Online:2026-02-10
摘要:
为应对建筑垃圾回收与混凝土行业碳封存的双重挑战,本研究采用CO2矿化再生粗骨料和椰壳炭作为天然骨料的可持续替代材料,系统研究了再生粗骨料(质量取代率0%~100%)与椰壳炭(体积取代率0%~30%)对CO2养护再生混凝土力学性能、固碳能力及微观结构的影响。结果表明,最优配合比(0%再生粗骨料+20%椰壳炭)混凝土的抗压强度达到42.1 MPa(较正常养护的对照组试件提升38.0%),劈裂抗拉强度达到3.86 MPa(提升23.7%)。这归因于椰壳炭的多级孔隙结构能调控水分促进二次水化反应,并加速CO2扩散驱动CaCO3致密化。通过热重分析、傅里叶变换红外光谱和扫描电子显微镜等多尺度表征发现,当椰壳炭取代率为20%时,既能有效促进CaCO3的多晶型转化,又能较好维持水化硅酸钙(C-S-H)的稳定性,使碳封存能力提升100%。本研究通过协同废弃物资源化与CO2利用,为开发高性能低碳混凝土提供了有效方案,对可持续建筑实践具有重要价值。
中图分类号:
黄振辉, 赵菲, 常钧, 李文政, 周智. CO2养护椰壳炭再生混凝土的力学性能和固碳能力[J]. 硅酸盐通报, 2026, 45(1): 156-164.
HUANG Zhenhui, ZHAO Fei, CHANG Jun, LI Wenzheng, ZHOU Zhi. Mechanical Properties and Carbon Sequestration Capacity of CO2-Cured Recycled Aggregate Concrete Incorporating Coconut Shell Biochar[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 156-164.
| Sample No. | Mix ratio/(kg·m-3) | |||||
|---|---|---|---|---|---|---|
| Cement | NCA | RCA | Sand | CSB | Water | |
| R0_CSB0 | 390 | 1 150 | 0 | 670 | 0 | 195 |
| R50_CSB0 | 390 | 575 | 575 | 670 | 0 | 195 |
| R75_CSB0 | 390 | 287 | 863 | 670 | 0 | 195 |
| R100_CSB0 | 390 | 0 | 1 150 | 670 | 0 | 195 |
| R0_CSB10 | 390 | 1 150 | 0 | 603 | 12 | 195 |
| R50_CSB10 | 390 | 575 | 575 | 603 | 12 | 195 |
| R75_CSB10 | 390 | 287 | 863 | 603 | 12 | 195 |
| R100_CSB10 | 390 | 0 | 1 150 | 603 | 12 | 195 |
| R0_CSB20 | 390 | 1 150 | 0 | 536 | 24 | 195 |
| R50_CSB20 | 390 | 575 | 575 | 536 | 24 | 195 |
| R75_CSB20 | 390 | 287 | 863 | 536 | 24 | 195 |
| R100_CSB20 | 390 | 0 | 1 150 | 536 | 24 | 195 |
| R0_CSB30 | 390 | 1 150 | 0 | 469 | 36 | 195 |
| R50_CSB30 | 390 | 575 | 575 | 469 | 36 | 195 |
| R75_CSB30 | 390 | 287 | 863 | 469 | 36 | 195 |
| R100_CSB30 | 390 | 0 | 1 150 | 469 | 36 | 195 |
表1 混凝土试件配合比设计
Table 1 Concrete specimen mix ratio design
| Sample No. | Mix ratio/(kg·m-3) | |||||
|---|---|---|---|---|---|---|
| Cement | NCA | RCA | Sand | CSB | Water | |
| R0_CSB0 | 390 | 1 150 | 0 | 670 | 0 | 195 |
| R50_CSB0 | 390 | 575 | 575 | 670 | 0 | 195 |
| R75_CSB0 | 390 | 287 | 863 | 670 | 0 | 195 |
| R100_CSB0 | 390 | 0 | 1 150 | 670 | 0 | 195 |
| R0_CSB10 | 390 | 1 150 | 0 | 603 | 12 | 195 |
| R50_CSB10 | 390 | 575 | 575 | 603 | 12 | 195 |
| R75_CSB10 | 390 | 287 | 863 | 603 | 12 | 195 |
| R100_CSB10 | 390 | 0 | 1 150 | 603 | 12 | 195 |
| R0_CSB20 | 390 | 1 150 | 0 | 536 | 24 | 195 |
| R50_CSB20 | 390 | 575 | 575 | 536 | 24 | 195 |
| R75_CSB20 | 390 | 287 | 863 | 536 | 24 | 195 |
| R100_CSB20 | 390 | 0 | 1 150 | 536 | 24 | 195 |
| R0_CSB30 | 390 | 1 150 | 0 | 469 | 36 | 195 |
| R50_CSB30 | 390 | 575 | 575 | 469 | 36 | 195 |
| R75_CSB30 | 390 | 287 | 863 | 469 | 36 | 195 |
| R100_CSB30 | 390 | 0 | 1 150 | 469 | 36 | 195 |
| Sample No. | m600/% | m800/% | U/% |
|---|---|---|---|
| R0_CSB0 | 89.59 | 86.59 | 3.00 |
| R0_CSB10 | 91.94 | 86.15 | 5.79 |
| R0_CSB20 | 89.85 | 83.83 | 6.02 |
| R0_CSB30 | 91.38 | 84.51 | 6.87 |
表2 矿化28 d后CSB混凝土的固碳率
Table 2 Carbon sequestration efficiency of CSB concrete after 28 d mineralization
| Sample No. | m600/% | m800/% | U/% |
|---|---|---|---|
| R0_CSB0 | 89.59 | 86.59 | 3.00 |
| R0_CSB10 | 91.94 | 86.15 | 5.79 |
| R0_CSB20 | 89.85 | 83.83 | 6.02 |
| R0_CSB30 | 91.38 | 84.51 | 6.87 |
| Material | Cement | NCA | Sand | CSB | CO2 |
|---|---|---|---|---|---|
| Price/(yuan·t-1) | 520 | 117 | 185 | 1 000 | -72 |
表3 混凝土原材料价格
Table 3 Prices of raw materials for concrete
| Material | Cement | NCA | Sand | CSB | CO2 |
|---|---|---|---|---|---|
| Price/(yuan·t-1) | 520 | 117 | 185 | 1 000 | -72 |
| Sample No. | Price/(yuan·m-3) | |||||
|---|---|---|---|---|---|---|
| Cement | NCA | Sand | CSB | CO2 | Total | |
| R0_CSB0 | 202.80 | 134.55 | 123.95 | 0 | -0.84 | 460.46 |
| R0_CSB10 | 202.80 | 134.55 | 111.55 | 12 | -1.62 | 459.28 |
| R0_CSB20 | 202.80 | 134.55 | 99.16 | 24 | -1.69 | 458.82 |
| R0_CSB30 | 202.80 | 134.55 | 86.76 | 36 | -1.93 | 458.18 |
表4 CSB混凝土材料成本
Table 4 Material cost of CSB concrete
| Sample No. | Price/(yuan·m-3) | |||||
|---|---|---|---|---|---|---|
| Cement | NCA | Sand | CSB | CO2 | Total | |
| R0_CSB0 | 202.80 | 134.55 | 123.95 | 0 | -0.84 | 460.46 |
| R0_CSB10 | 202.80 | 134.55 | 111.55 | 12 | -1.62 | 459.28 |
| R0_CSB20 | 202.80 | 134.55 | 99.16 | 24 | -1.69 | 458.82 |
| R0_CSB30 | 202.80 | 134.55 | 86.76 | 36 | -1.93 | 458.18 |
| [1] | 蒋正武, 高文斌, 杨 巧, 等. 低碳混凝土的技术理念与途径思考[J]. 建筑材料学报, 2023, 26(11): 1143-1150. |
| JIANG Z W, GAO W B, YANG Q, et al. Technical principles and approaches for low carbon concrete[J]. Journal of Building Materials, 2023, 26(11): 1143-1150 (in Chinese). | |
| [2] | 元 强, 张胶玲, 张苏辉, 等. CO2矿化再生骨料物理性能影响因素与机理[J]. 建筑材料学报, 2024, 27(10): 895-903. |
| YUAN Q, ZHANG J L, ZHANG S H, et al. Influencing factors of physical properties of CO2 mineralized recycled aggregate and its mechanism[J]. Journal of Building Materials, 2024, 27(10): 895-903 (in Chinese). | |
| [3] |
ZHAN B J, XUAN D X, POON C S. Enhancement of recycled aggregate properties by accelerated CO2 curing coupled with limewater soaking process[J]. Cement and Concrete Composites, 2018, 89: 230-237.
DOI URL |
| [4] |
WANG C Q, GUO J, WANG X Z, et al. Dynamic mechanical properties and damage constitutive model of high-toughness recycled aggregate concrete under high strain rate impact loads[J]. Journal of Building Engineering, 2025, 106: 112589.
DOI URL |
| [5] |
WU J Y, JING H W, GAO Y, et al. Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill[J]. Cement and Concrete Composites, 2022, 127: 104408.
DOI URL |
| [6] |
DUNG N T, HAY R, LESIMPLE A, et al. Influence of CO2 concentration on the performance of MgO cement mixes[J]. Cement and Concrete Composites, 2021, 115: 103826.
DOI URL |
| [7] |
SONG S Y, LIU Z X, LIU G M, et al. Application of biochar cement-based materials for carbon sequestration[J]. Construction and Building Materials, 2023, 405: 133373.
DOI URL |
| [8] | 陈铁锋, 高小建. 生物炭对碳化养护水泥砂浆的改性机理[J]. 建筑材料学报, 2023, 26(8): 831-837. |
| CHEN T F, GAO X J. Modification mechanism of biochar on carbonation-cured cement mortar[J]. Journal of Building Materials, 2023, 26(8): 831-837 (in Chinese). | |
| [9] |
ROYCHAND R, LI J, KILMARTIN-LYNCH S, et al. Carbon sequestration from waste and carbon dioxide mineralisation in concrete: a stronger, sustainable and eco-friendly solution to support circular economy[J]. Construction and Building Materials, 2023, 379: 131221.
DOI URL |
| [10] |
YE P, GUO B L, QIN H Y, et al. Investigation of the properties and sustainability of modified biochar-doped cement-based composite[J]. Cement and Concrete Composites, 2024, 153: 105684.
DOI URL |
| [11] | ROSA L, BECATTINI V, GABRIELLI P, et al. Carbon dioxide mineralization in recycled concrete aggregates can contribute immediately to carbon-neutrality[J]. Resources, Conservation and Recycling, 2022, 184: 106436. |
| [12] | 李善武, 樊展霖, 刘剑辉, 等. 温度和相对湿度对CO2养护钢渣制品性能的影响[J]. 建筑材料学报, 2025, 28(1): 33-41. |
| LI S W, FAN Z L, LIU J H, et al. Effect of temperature and relative humidity on performance of CO2 curing steel slag products[J]. Journal of Building Materials, 2025, 28(1): 33-41 (in Chinese). | |
| [13] | 邹庆焱, 史才军, 郑克仁, 等. 预养护对砌块混凝土二氧化碳养护的影响[J]. 建筑材料学报, 2008, 11(1): 116-120. |
| ZOU Q Y, SHI C J, ZHENG K R, et al. Effect of pre-conditioning on CO2 curing of block concretes[J]. Journal of Building Materials, 2008, 11(1): 116-120 (in Chinese). | |
| [14] | 应敬伟, 蒙秋江, 肖建庄. 再生骨料CO2强化及其对混凝土抗压强度的影响[J]. 建筑材料学报, 2017, 20(2): 277-282. |
| YING J W, MENG Q J, XIAO J Z. Effect of CO2-modified recycled aggregate on compressive strength of concrete[J]. Journal of Building Materials, 2017, 20(2): 277-282 (in Chinese). | |
| [15] |
ZHANG T, CUI J Z, CHEN M, et al. Durability of concrete containing carbonated recycled aggregates: a comprehensive review[J]. Cement and Concrete Composites, 2025, 156: 105865.
DOI URL |
| [16] |
BHAGAT T S, PANCHARATHI R K. Performance, microstructure and carbon sequestration potential of agro biochar based cement mortars[J]. Cement and Concrete Composites, 2025, 156: 105867.
DOI URL |
| [17] |
SHI X S, LYU S X, WANG Q Y, et al. Experimental study on the effect of carbonate ions on ITZs of geopolymeric recycled concrete[J]. Construction and Building Materials, 2024, 446: 137919.
DOI URL |
| [18] | 冷 勇, 余 睿, 范定强, 等. 碳化再生粗骨料环保型超高性能混凝土的制备[J]. 建筑材料学报, 2022, 25(11): 1185-1189+1218. |
| LENG Y, YU R, FAN D Q, et al. Preparation of environmentally friendly UHPC containing carbonized recycled coarse aggregate[J]. Journal of Building Materials, 2022, 25(11): 1185-1189+1218 (in Chinese). | |
| [19] |
MEDINA C, ZHU W Z, HOWIND T, et al. Influence of mixed recycled aggregate on the physical-mechanical properties of recycled concrete[J]. Journal of Cleaner Production, 2014, 68: 216-225.
DOI URL |
| [20] |
ELGAALI H H, LOPEZ-ARIAS M, VELAY-LIZANCOS M. Accelerated CO2 exposure treatment to enhance bio-receptivity properties of mortars with natural and recycled concrete aggregate[J]. Construction and Building Materials, 2024, 449: 138423.
DOI URL |
| [21] | JIANG L B, WANG Z, XU H Z, et al. Nanoparticle stabilized carbon dioxide foam: improving hydration, carbonation and pore structure of foamed concrete[J]. Composites Part B: Engineering, 2025, 305: 112714. |
| [22] |
SEO J H, PARK S M, LEE H K. Evolution of the binder gel in carbonation-cured Portland cement in an acidic medium[J]. Cement and Concrete Research, 2018, 109: 81-89.
DOI URL |
| [23] |
BERSISA A, MOON K Y, KIM G M, et al. Microstructural characterization of CO2-cured calcium silicate cement[J]. Developments in the Built Environment, 2024, 19: 100518.
DOI URL |
| [24] |
LIU J, LIU G, ZHANG W Z, et al. Application potential analysis of biochar as a carbon capture material in cementitious composites: a review[J]. Construction and Building Materials, 2022, 350: 128715.
DOI URL |
| [25] |
REN Z S, WANG L, WANG H, et al. Carbonation behavior of solidified/stabilized cadmium in phosphogypsum slag-based cementitious materials[J]. Construction and Building Materials, 2024, 437: 136848.
DOI URL |
| [26] |
KALKREUTH J, ULLRICH A, GARBEV K, et al. Accelerated carbonation of hardened cement paste: quantification of calcium carbonate via ATR infrared spectroscopy[J]. Journal of the American Ceramic Society, 2024, 107(4): 2627-2640.
DOI URL |
| [27] | GUNN P F E, ONN C C, MO K H, et al. Enhancing carbon sequestration in cement mortar using high volume local rice husk biochar coupled with carbonation curing[J]. Case Studies in Construction Materials, 2024, 21: e03591. |
| [28] | 王 丹. 钢渣碳酸化过程中碳酸钙生长与性能关系[D]. 大连: 大连理工大学, 2020. |
| WANG D. Relationship between calcium carbonate growth and properties during carbonation of steel slag[D]. Dalian: Dalian University of Technology, 2020 (in Chinese). | |
| [29] |
TAN S L, LIU W, QING L B, et al. Evaluation on the ability of carbon capture, utilization and storage of cementitious pastes incorporated with CO2-free and CO2-saturated biochar[J]. Construction and Building Materials, 2025, 482: 141691.
DOI URL |
| [30] |
SHI X C, SHUI Z H. Effect of eggshell powder addition on the properties of cement pastes with early CO2 curing and further water curing[J]. Construction and Building Materials, 2023, 404: 133231.
DOI URL |
| [31] |
ZHANG Y, MAIERDAN Y, GUO T B, et al. Biochar as carbon sequestration material combines with sewage sludge incineration ash to prepare lightweight concrete[J]. Construction and Building Materials, 2022, 343: 128116.
DOI URL |
| [32] |
CHEN T F, ZHAO L Y, GAO X J, et al. Modification of carbonation-cured cement mortar using biochar and its environmental evaluation[J]. Cement and Concrete Composites, 2022, 134: 104764.
DOI URL |
| [1] | 安仰壮, 俞海, 刘昌庚. 基于数字图像相关的玄武岩纤维泡沫混凝土压缩损伤研究[J]. 硅酸盐通报, 2026, 45(1): 92-102. |
| [2] | 刘仕琪, 周紫晨, 黄修林, 曾明, 张冰, 张剑峰, 沈春华. 燃煤渣对水泥力学和水化过程的影响[J]. 硅酸盐通报, 2026, 45(1): 165-176. |
| [3] | 王文胜, 吕海龙, 马江涛, 刘琦, 聂晓东. 珊瑚混凝土基础力学性能及工程应用研究现状[J]. 硅酸盐通报, 2026, 45(1): 1-20. |
| [4] | 唐咸远, 任博文, 胡冰倩, 柳大成, 冯美杰. 超早强环保型钢渣微粉UHPC制备及形成机理[J]. 硅酸盐通报, 2026, 45(1): 191-201. |
| [5] | 梁新星, 张敬申, 王朝胜, 梁李归祖, 刘泽, 张通, 朱颖灿. 预养护对硅钙渣复合蒸压加气混凝土宏观性能与微观结构的影响[J]. 硅酸盐通报, 2026, 45(1): 40-46. |
| [6] | 姜德民, 胡思雨, 康红龙, 李御锦, 候宇翔. 改性处理对3D打印稻草纤维水泥基复合材料性能的影响[J]. 硅酸盐通报, 2026, 45(1): 47-57. |
| [7] | 张争奇, 刘祉鑫, 芮照诚, 石杰荣, 杨新红. 地聚物稳定建筑固废再生集料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3347-3354. |
| [8] | 王倩倩, 戴航, 王立川, 张春瑜, 李利平, 王海彦, 张京京. 高氯盐加速侵蚀下水泥-水玻璃双液浆结石体耐久性研究[J]. 硅酸盐通报, 2025, 44(9): 3137-3146. |
| [9] | 义启贵, 湛缕金, 刘祥, 许瑞天, 梁莹, 陈宗平. 碳酸氢钠溶液碳化:一种提高再生骨料混凝土性能的新方法[J]. 硅酸盐通报, 2025, 44(9): 3227-3237. |
| [10] | 朱子龙, 陈培冲, 廖洁, 杨旋, 赵德强, 曲良辰, 王桂明, 沈卫国. 砂砾岩机制砂粒形对混凝土性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3168-3177. |
| [11] | 刘佳钰, 高誉, 刘泽, 温帅云, 王栋民, 危鹏, 张春辉, 朱正江, 李清亚. 水泥固化飞灰-水泥复合胶凝材料的性能与微观结构研究[J]. 硅酸盐通报, 2025, 44(9): 3272-3279. |
| [12] | 张小龙, 王伟, 姚爱军, 王朝晖, 冯希浩, 王杰. 低温低压养护条件下复合胶凝材料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3295-3304. |
| [13] | 叶纪盛, 马英, 李淯伟, 邰安, 王家豪. 早期CO2养护对钢渣固废胶凝材料性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3326-3336. |
| [14] | 余洁歆, 朱艺婷, 庄旭, 陈玉霜, 张广达, 许莉. 以尾矿砂为骨料的绿色工程水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2025, 44(9): 3337-3346. |
| [15] | 黄友奇, 史刘彤, 高玉波, 周林. 蓝宝石单晶的动态力学性能及本构关系研究[J]. 硅酸盐通报, 2025, 44(9): 3391-3401. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||