硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 165-176.DOI: 10.16552/j.cnki.issn1001-1625.2025.0600
刘仕琪1(
), 周紫晨1, 黄修林2(
), 曾明1, 张冰1, 张剑峰1, 沈春华3
收稿日期:2025-06-19
修订日期:2025-08-30
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
黄修林,博士,教授。E-mail:583887449@qq.com
作者简介:刘仕琪(1993—),男,博士研究生。主要从事固废建材化利用方面的研究。E-mail:shiqiliuwjy@163.com
基金资助:
LIU Shiqi1(
), ZHOU Zichen1, HUANG Xiulin2(
), ZENG Ming1, ZHANG Bing1, ZHANG Jianfeng1, SHEN Chunhua3
Received:2025-06-19
Revised:2025-08-30
Published:2026-01-20
Online:2026-02-10
摘要:
水化活性较低是限制燃煤渣作为辅助胶凝材料应用的关键因素,本文通过机械球磨方式激发燃煤渣水化活性,并系统研究了燃煤渣活性提升机理及对复合胶凝材料力学性能和水化过程的影响。结果表明:机械球磨破坏了燃煤渣中层状硅铝酸盐结构,引起Si—O、Al—O结合能变化;与燃煤渣相比,球磨燃煤渣活性硅铝的浓度分别提升694.55%和634.27%。当球磨燃煤渣掺量为30%(质量分数)时,复合胶凝材料3和28 d的抗压强度相比基准组分别提升6.03%和22.38%,相比对照组分别提升49.13%和82.99%。球磨燃煤渣的掺入能够促进Ca(OH)2的消耗,增加水化硅酸钙(C-S-H)凝胶等水化产物的含量,增强微观结构致密性,提升复合胶凝材料力学性能。在不影响复合胶凝材料力学性能情况下,材料的累计水化放热量随燃煤渣掺量增加逐渐降低。
中图分类号:
刘仕琪, 周紫晨, 黄修林, 曾明, 张冰, 张剑峰, 沈春华. 燃煤渣对水泥力学和水化过程的影响[J]. 硅酸盐通报, 2026, 45(1): 165-176.
LIU Shiqi, ZHOU Zichen, HUANG Xiulin, ZENG Ming, ZHANG Bing, ZHANG Jianfeng, SHEN Chunhua. Influence of Burnt Coal Cinder on Mechanics and Hydration Process of Cement[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 165-176.
| Material | Mass fraction/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | Na2O | K2O | LOI | |
| Cement | 19.98 | 5.64 | 3.35 | 62.57 | 1.87 | 3.04 | 0.34 | 0.16 | 0.65 | 2.40 |
| BCC | 52.51 | 19.87 | 7.02 | 4.28 | 0.75 | 0.29 | 0.74 | 0.25 | 0.34 | 9.89 |
表1 原材料的主要化学成分
Table 1 Main chemical composition of raw materials
| Material | Mass fraction/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | Na2O | K2O | LOI | |
| Cement | 19.98 | 5.64 | 3.35 | 62.57 | 1.87 | 3.04 | 0.34 | 0.16 | 0.65 | 2.40 |
| BCC | 52.51 | 19.87 | 7.02 | 4.28 | 0.75 | 0.29 | 0.74 | 0.25 | 0.34 | 9.89 |
| Group | Cementing materials mass fraction/ % | Machine-made sand mass fraction/ % | Sand/binder ratio | Water/ binder ratio | ||||
|---|---|---|---|---|---|---|---|---|
| Cement | BCC-BM | 0.180~ <0.425 mm | 0.425~ <0.850 mm | 0.850~ <2.360 mm | 2.360~ <4.750 mm | |||
| BCC-BM10 | 90 | 10 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM20 | 80 | 20 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM30 | 70 | 30 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM40 | 60 | 40 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM50 | 50 | 50 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| Basic | 100 | 0 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| Reference | 70 | 30 (BCC) | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
表2 砂浆试件配合比
Table 2 Mix ratio of mortar specimen
| Group | Cementing materials mass fraction/ % | Machine-made sand mass fraction/ % | Sand/binder ratio | Water/ binder ratio | ||||
|---|---|---|---|---|---|---|---|---|
| Cement | BCC-BM | 0.180~ <0.425 mm | 0.425~ <0.850 mm | 0.850~ <2.360 mm | 2.360~ <4.750 mm | |||
| BCC-BM10 | 90 | 10 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM20 | 80 | 20 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM30 | 70 | 30 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM40 | 60 | 40 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| BCC-BM50 | 50 | 50 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| Basic | 100 | 0 | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| Reference | 70 | 30 (BCC) | 27.27 | 36.36 | 27.27 | 9.10 | 2.5 | 0.4 |
| Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | Na2O | K2O | LOI |
|---|---|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 50.67 | 18.95 | 11.25 | 4.50 | 0.82 | 0.22 | 0.69 | 0.22 | 0.31 | 9.02 |
表3 BCC-BM燃煤渣的主要化学成分
Table 3 Main chemical composition of BCC-BM
| Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | Na2O | K2O | LOI |
|---|---|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 50.67 | 18.95 | 11.25 | 4.50 | 0.82 | 0.22 | 0.69 | 0.22 | 0.31 | 9.02 |
图6 复合胶凝材料水化不同龄期的XRD谱1-Ca(OH)2; 2-CaCO3; 3-Ca3SiO5;4-Ca3SiO5; 5-Ca2(CO3)SO4·4H2O; 6-C-S-H;7-Ettringite; 8-SiO2
Fig.6 XRD patterns of composite cementitious material at different hydration ages
| Group | Mass loss rate of C-S-H and AFt/% | Mass loss rate of Ca(OH)2/% | Mass loss rate of CaCO3/% | |||
|---|---|---|---|---|---|---|
| 3 d | 28 d | 3 d | 28 d | 3 d | 28 d | |
| Basic | 6.82 | 7.44 | 4.48 | 5.34 | 3.46 | 6.02 |
| BCC-BM10 | 5.98 | 8.09 | 3.86 | 4.39 | 4.77 | 6.25 |
| BCC-BM30 | 5.58 | 8.27 | 3.05 | 3.34 | 5.92 | 7.07 |
| BCC-BM50 | 4.70 | 7.37 | 2.58 | 2.57 | 5.28 | 7.23 |
表4 复合胶凝材料热失重率参数
Table 4 Thermal mass loss rate parameters of composite cementitious material
| Group | Mass loss rate of C-S-H and AFt/% | Mass loss rate of Ca(OH)2/% | Mass loss rate of CaCO3/% | |||
|---|---|---|---|---|---|---|
| 3 d | 28 d | 3 d | 28 d | 3 d | 28 d | |
| Basic | 6.82 | 7.44 | 4.48 | 5.34 | 3.46 | 6.02 |
| BCC-BM10 | 5.98 | 8.09 | 3.86 | 4.39 | 4.77 | 6.25 |
| BCC-BM30 | 5.58 | 8.27 | 3.05 | 3.34 | 5.92 | 7.07 |
| BCC-BM50 | 4.70 | 7.37 | 2.58 | 2.57 | 5.28 | 7.23 |
| [1] |
CHURKINA G, ORGANSCHI A, REYER C P O, et al. Buildings as a global carbon sink[J]. Nature Sustainability, 2020, 3(4): 269-276.
DOI |
| [2] |
RAVIKUMAR D, ZHANG D, KEOLEIAN G, et al. Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit[J]. Nature Communications, 2021, 12: 855.
DOI PMID |
| [3] | 赵羽习, 张大伟, 夏 晋, 等. 混凝土结构全寿命减碳技术研究进展[J]. 建筑结构学报, 2024, 45(3): 1-14. |
|
ZHAO Y X, ZHANG D W, XIA J, et al. Research progress of life-cycle carbon emission reduction technologies for concrete structures[J]. Journal of Building Structures, 2024, 45(3): 1-14 (in Chinese).
DOI |
|
| [4] | 李丹, 郑伟, 刘彦伟. “双碳”背景下水泥行业发展之路[J]. 中国水泥, 2022, 5: 82-84. |
| LI D, ZHENG W, LIU Y W. The development path of cement industry under the background of “dual carbon”[J]. China Cement, 2022, 5: 82-84 (in Chinese). | |
| [5] | 杨向龙, 戈海猛. “双碳”背景下水泥行业碳减排策略探讨[J]. 资源节约与环保, 2024, 11: 130-133. |
| YANG X L, GE H M. Exploration of carbon emission reduction strategies in the cement industry under the background of “dual carbon”[J]. Resources Economization & Environmental Protection, 2024, 11: 130-133 (in Chinese). | |
| [6] | 王丽丽. 低碳在水泥行业高质量发展中的应用探析[J]. 中国水泥, 2024(增刊2): 53-54. |
| WANG L L. Exploration of the application of low carbon in high quality development of cement industry[J]. China Cement, 2024(supplement 2): 53-54 (in Chinese). | |
| [7] |
SILVEIRA V A L, DE RESENDE D S, SILVA BEZERRA A C. Sanitary ware waste in eco-friendly Portland blended cement: potential use as supplementary cementitious material[J]. Cement, 2025, 19: 100126.
DOI URL |
| [8] |
ZAJAC M, BREMEIER R, DEJA J, et al. Carbonation hardening of Portland cement with recycled supplementary cementitious materials[J]. Cement and Concrete Composites, 2025, 157: 105904.
DOI URL |
| [9] | 施麟芸, 匡敬忠, 刘松柏. 尾矿制备辅助胶凝材料的潜能与机制评述[J]. 建筑材料学报, 2024, 27(10): 922-930. |
| SHI L Y, KUANG J Z, LIU S B. Review on potential and mechanism of supplementary cementitious materials prepared by tailings[J]. Journal of Building Materials, 2024, 27(10): 922-930 (in Chinese). | |
| [10] | 徐美贞, 张道明. 辅助胶凝材料对再生混凝土性能影响的研究[J]. 齐齐哈尔大学学报(自然科学版), 2023, 39(6): 77-83+94. |
| XU M Z, ZHANG D M. Study on the influence of supplementary cementitious materials on the performance of recycled concrete[J]. Journal of Qiqihar University (Natural Science Edition), 2023, 39(6): 77-83+94 (in Chinese). | |
| [11] | 王朝蓬, 杨 洋, 刘宇鹏, 等. 煤矸石制备水泥辅助胶凝材料的应用研究[J]. 水泥工程, 2023(5): 1-4. |
| WANG Z P, YANG Y, LIU Y P, et al. Research on the application of coal gangue to prepare cement assisted cementitious materials[J]. Cement Engineering, 2023(5): 1-4 (in Chinese). | |
| [12] |
赵英良, 郑勇, 崔凯, 等. 高活性碳化钢渣对水泥基复合材料水化与力学性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1306-1327.
DOI |
|
ZHAO Y L, ZHENG Y, CUI K, et al. Effect of highly reactive carbonated steel slag on hydration and mechanical properties of cement composites[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(4): 1306-1327 (in Chinese).
DOI |
|
| [13] | 车志豪, 王家滨, 张凯峰, 等. 多元胶凝材料体系再生混凝土复合盐侵蚀耐久性退化规律[J]. 硅酸盐通报, 2023, 42(8): 2733-2742. |
| CHE Z H, WANG J B, ZHANG K F, et al. Durability degradation law of recycled aggregate concrete with multiple cementitious materials system subjected to compound salt erosion[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2733-2742 (in Chinese). | |
| [14] |
SMARZEWSKI P, BARNAT-HUNEK D. Mechanical and durability related properties of high performance concrete made with coal cinder and waste foundry sand[J]. Construction and Building Materials, 2016, 121: 9-17.
DOI URL |
| [15] |
HUANG M Y, BAO S X, ZHANG Y M, et al. Calcium-activated geopolymer ceramics: study of powder calcination and amorphous gel phases[J]. Journal of the American Ceramic Society, 2023, 106(6): 3964-3977.
DOI URL |
| [16] | 黎梦珂, 包申旭, 张一敏, 等. 燃煤渣基地聚物的制备及热活化效果[J]. 土木与环境工程学报, 2023, 41: 188-126. |
| LI M K, BAO S X, ZHANG Y M, et al. Research on preparation and thermal activation effect of geopolymers based on burnt coal cinder[J]. Journal of Civil and Environmental Engineering, 2023, 41: 188-126 (in Chinese). | |
| [17] |
黄梓谕, 丁之尧, 曹 丹, 等. 基于响应面法的多固废基地聚合物配比优化及其表征[J]. 硅酸盐通报, 2025, 44(2): 569-578.
DOI |
|
HUANG Z Y, DING Z Y, CAO D, et al. Ratio optimization and characterization of multi-solid waste-based geopolymer by response surface method[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 569-578 (in Chinese).
DOI |
|
| [18] | 赵灿濠, 李犇, 徐虎, 等. 耦合激发炉渣基水泥净浆力学性能研究[J]. 材料研究与应用, 2024, 18(5): 841⁃848. |
| ZHAO C H, LI B, XU H, et al. Study on the mechanical properties of slag-based cement paste under coupled excitation[J]. Materials Research and Application, 2024, 18(5): 841⁃848 (in Chinese). | |
| [19] | 樊金涛, 刘荣进, 陈 平, 等. 水淬锰渣-炉渣-石灰石复合微粉的活性试验[J]. 桂林理工大学学报, 2024, 44(1): 149-154. |
| FAN J T, LIU R J, CHEN P, et al. Activation of superfine-powder admixture of water-cooled manganese, slag-furnace and slag-limestone[J]. Journal of Guilin University of Technology, 2024, 44(1): 149-154 (in Chinese). | |
| [20] |
NIU H, KINNUNEN P, SREENIVASAN H, et al. Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential[J]. Minerals Engineering, 2020, 151: 106331.
DOI URL |
| [21] |
BOLDYREV V V. Mechanochemistry and mechanical activation of solids[J]. Russian Chemical Reviews, 2006, 75(3): 177-189.
DOI URL |
| [22] | 汪月琴, 刘 银, 张明旭, 等. 机械活化和静压对水镁石晶体结构的影响[J]. 中国科学技术大学学报, 2018, 48(7): 542-549+599. |
| WANG Y Q, LIU Y, ZHANG M X, et al. Effect ofmechanical activation and hydrostatic pressure on the crystal structure of brucite[J]. Journal of University of Science and Technology of China, 2018, 48(7): 542-549+599 (in Chinese). | |
| [23] |
SHI Y, LI Y, WANG H W. Eco-friendly solid waste-based cementitious material containing a large amount of phosphogypsum: performance optimization, micro-mechanisms, and environmental properties[J]. Journal of Cleaner Production, 2024, 471: 143335.
DOI URL |
| [24] | 商效瑀, 史华彤, 龚 彬, 等. 基于秸秆固废资源化的水泥辅助胶凝材料制备与性能[J/OL]. 复合材料学报, 2024: 1-11 ( 2024-05-23) [ 2025-07-08]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20240520005&dbname=CJFD&dbcode=CJFQ. |
| SHANG X Y, SHI H T, GONG B, et al. Preparation and properties of cement-aided cementitious material based on straw solid waste recycling[J/OL]. China Industrial Economics, 2024: 1-11 ( 2024-05-23)[ 2025-07-08]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20240520005&dbname=CJFD&dbcode=CJFQ (in Chinese). | |
| [25] | 朱增超, 刘贤平, 水中和, 等. 固废基复合胶凝材料配比优化设计及协同效应研究[J]. 硅酸盐通报, 2023, 42(12): 4368-4377+4388. |
| ZHU Z C, LIU X P, SHUI Z H, et al. Mix ratio optimization design and synergistic effect study of multi-source solid waste binders[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4368-4377+4388 (in Chinese). | |
| [26] |
JAKOB C, JANSEN D, DENGLER J, et al. Controlling ettringite precipitation and rheological behavior in ordinary Portland cement paste by hydration control agent, temperature and mixing[J]. Cement and Concrete Research, 2023, 166: 107095.
DOI URL |
| [27] |
YUSUF M O. Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy[J]. Applied Sciences, 2023, 13(5): 3353.
DOI URL |
| [28] |
KUPWADE-PATIL K, PALKOVIC S D, BUMAJDAD A, et al. Use of silica fume and natural volcanic ash as a replacement to Portland cement: micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography[J]. Construction and Building Materials, 2018, 158: 574-590.
DOI URL |
| [29] | 周正宁, 张祖华, 邓毓琳, 等. CLDH对矿渣基地聚合物微观结构和性能的影响[J]. 硅酸盐学报, 2023, 51(9): 2138-2152. |
| ZHOU Z N, ZHANG Z H, DENG Y L, et al. Effect of CLDH on microstructure and properties of slag-based geopolymer[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2138-2152 (in Chinese). | |
| [30] |
SHAKOURI M, EXSTROM C L, RAMANATHAN S, et al. Pretreatment of corn stover ash to improve its effectiveness as a supplementary cementitious material in concrete[J]. Cement and Concrete Composites, 2020, 112: 103658.
DOI URL |
| [31] |
DE LIMA C P F, CORDEIRO G C. Evaluation of corn straw ash as supplementary cementitious material: effect of acid leaching on its pozzolanic activity[J]. Cement, 2021, 4: 100007.
DOI URL |
| [1] | 安仰壮, 俞海, 刘昌庚. 基于数字图像相关的玄武岩纤维泡沫混凝土压缩损伤研究[J]. 硅酸盐通报, 2026, 45(1): 92-102. |
| [2] | 黄振辉, 赵菲, 常钧, 李文政, 周智. CO2养护椰壳炭再生混凝土的力学性能和固碳能力[J]. 硅酸盐通报, 2026, 45(1): 156-164. |
| [3] | 王文胜, 吕海龙, 马江涛, 刘琦, 聂晓东. 珊瑚混凝土基础力学性能及工程应用研究现状[J]. 硅酸盐通报, 2026, 45(1): 1-20. |
| [4] | 唐咸远, 任博文, 胡冰倩, 柳大成, 冯美杰. 超早强环保型钢渣微粉UHPC制备及形成机理[J]. 硅酸盐通报, 2026, 45(1): 191-201. |
| [5] | 梁新星, 张敬申, 王朝胜, 梁李归祖, 刘泽, 张通, 朱颖灿. 预养护对硅钙渣复合蒸压加气混凝土宏观性能与微观结构的影响[J]. 硅酸盐通报, 2026, 45(1): 40-46. |
| [6] | 姜德民, 胡思雨, 康红龙, 李御锦, 候宇翔. 改性处理对3D打印稻草纤维水泥基复合材料性能的影响[J]. 硅酸盐通报, 2026, 45(1): 47-57. |
| [7] | 张争奇, 刘祉鑫, 芮照诚, 石杰荣, 杨新红. 地聚物稳定建筑固废再生集料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3347-3354. |
| [8] | 王倩倩, 戴航, 王立川, 张春瑜, 李利平, 王海彦, 张京京. 高氯盐加速侵蚀下水泥-水玻璃双液浆结石体耐久性研究[J]. 硅酸盐通报, 2025, 44(9): 3137-3146. |
| [9] | 义启贵, 湛缕金, 刘祥, 许瑞天, 梁莹, 陈宗平. 碳酸氢钠溶液碳化:一种提高再生骨料混凝土性能的新方法[J]. 硅酸盐通报, 2025, 44(9): 3227-3237. |
| [10] | 朱子龙, 陈培冲, 廖洁, 杨旋, 赵德强, 曲良辰, 王桂明, 沈卫国. 砂砾岩机制砂粒形对混凝土性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3168-3177. |
| [11] | 刘佳钰, 高誉, 刘泽, 温帅云, 王栋民, 危鹏, 张春辉, 朱正江, 李清亚. 水泥固化飞灰-水泥复合胶凝材料的性能与微观结构研究[J]. 硅酸盐通报, 2025, 44(9): 3272-3279. |
| [12] | 张小龙, 王伟, 姚爱军, 王朝晖, 冯希浩, 王杰. 低温低压养护条件下复合胶凝材料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3295-3304. |
| [13] | 余洁歆, 朱艺婷, 庄旭, 陈玉霜, 张广达, 许莉. 以尾矿砂为骨料的绿色工程水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2025, 44(9): 3337-3346. |
| [14] | 黄友奇, 史刘彤, 高玉波, 周林. 蓝宝石单晶的动态力学性能及本构关系研究[J]. 硅酸盐通报, 2025, 44(9): 3391-3401. |
| [15] | 田哲泉, 刘涛, 余刘成, 黄习习, 张艳, 衣向阳. 硫酸盐侵蚀-干湿循环下纤维-水泥改良渣土的力学性能[J]. 硅酸盐通报, 2025, 44(9): 3483-3492. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||