硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 69-80.DOI: 10.16552/j.cnki.issn1001-1625.2025.0799
收稿日期:2025-08-07
修订日期:2025-09-04
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
王庆贺,博士,教授。E-mail: wangqinghe@sjzu.edu.cn
作者简介:李彤(1991—),女,博士研究生。主要从事相变混凝土方面的研究。E-mail: mitao_1271@163.com
基金资助:
LI Tong(
), WANG Qinghe(
), ZHANG Yichao
Received:2025-08-07
Revised:2025-09-04
Published:2026-01-20
Online:2026-02-10
摘要:
我国严寒与寒冷地区分布广泛,该类区域的混凝土结构长期处于冻融循环作用下,易发生损伤,显著缩短服役寿命。相变材料凭借吸、放热特性,可有效调控混凝土内部的温度场与应力场。基于此,本文首先建立了考虑不同相变材料掺量和再生骨料取代率的相变混凝土细观有限元模型,并通过CT扫描试验验证了模型的准确性;在此基础上,采用有限元数值模拟方法,分析了冻融循环过程中相变混凝土的温度响应及热力场演变规律。结果表明:相变材料能够有效抑制外部温度向混凝土内部的传递速率,缓解因再生骨料取代率提高所引起的温度波动;同时,相变材料的掺入显著降低了混凝土内部的平均热应力与最大主应力差。当相变材料掺量由0%增加到8%(质量分数)时,混凝土的平均热应力降低12.6%,骨料-砂浆界面过渡区最大主应力差平均值下降47.0%。相变材料通过潜热效应缓冲温度变形,有效缓解应力集中现象,从而提升混凝土抗冻性能。
中图分类号:
李彤, 王庆贺, 张逸超. 冻融循环作用下相变混凝土温度响应及热力场调控机理研究[J]. 硅酸盐通报, 2026, 45(1): 69-80.
LI Tong, WANG Qinghe, ZHANG Yichao. Temperature Response and Thermo-Mechanical Field Regulation Mechanism of Phase Change Concrete under Freeze-Thaw Cycles[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 69-80.
图1 再生骨料取代率为0%、相变材料掺量为4%的混凝土细观有限元模型
Fig.1 Mesoscopic finite element model of concrete with a recycled aggregate replacement rate of 0% and a phase change material content of 4%
图2 再生骨料取代率为50%、相变材料掺量为0%的混凝土细观有限元模型
Fig.2 Mesoscopic finite element model of concrete with a recycled aggregate replacement rate of 50% and a phase change material content of 0%
| Item | Specific heat capacity/(J·kg-1·K-1) | Thermal conductivity/(W·m-1·K-1) | Coefficient of thermal expansion/K-1 | Density/ (kg·m-3) | Elastic modulus/GPa | Poisson ratio |
|---|---|---|---|---|---|---|
| Aggregate | 840.2 | 2.932 | - | 2 600 | 71.20 | 0.16 |
| ITZ between aggregate and new mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 16.04 | 0.20 |
| New mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 32.07 | 0.22 |
ITZ between old mortar and new mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 13.55 | 0.20 |
| Old mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 18.43 | 0.22 |
ITZ between aggregate and old mortar | 840.3 | 0.931 | 1×10-5 | 2 160 | 11.06 | 0.20 |
| Phase change aggregate | 1 386.4 | 0.220 | 1×10-5 | 1 480 | 15.80 | 0.25 |
表1 相变混凝土热学及力学参数
Table 1 Thermal and mechanical parameters of phase change concrete
| Item | Specific heat capacity/(J·kg-1·K-1) | Thermal conductivity/(W·m-1·K-1) | Coefficient of thermal expansion/K-1 | Density/ (kg·m-3) | Elastic modulus/GPa | Poisson ratio |
|---|---|---|---|---|---|---|
| Aggregate | 840.2 | 2.932 | - | 2 600 | 71.20 | 0.16 |
| ITZ between aggregate and new mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 16.04 | 0.20 |
| New mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 32.07 | 0.22 |
ITZ between old mortar and new mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 13.55 | 0.20 |
| Old mortar | 840.2 | 0.931 | 1×10-5 | 2 160 | 18.43 | 0.22 |
ITZ between aggregate and old mortar | 840.3 | 0.931 | 1×10-5 | 2 160 | 11.06 | 0.20 |
| Phase change aggregate | 1 386.4 | 0.220 | 1×10-5 | 1 480 | 15.80 | 0.25 |
图4 再生骨料取代率为50%、相变材料掺量为4%的相变混凝土损伤云图和灰度图
Fig.4 Damage contour plots and grayscale images of phase change concrete with a recycled aggregate replacement rate of 50% and a phase change material content of 4%
图7 相变材料掺量为8%的相变混凝土降温放热过程温度云图
Fig.7 Temperature contour plots during cooling exothermic process of phase change concrete with a phase change material content of 8%
图8 相变材料掺量为8%的相变混凝土升温吸热过程温度云图
Fig.8 Temperature contour plots during heating endothermic process of phase change concrete with a phase change material content of 8%
图12 再生骨料取代率为50%、相变材料掺量为8%的相变混凝土应力云图
Fig.12 Stress contour plots of phase change concrete with a recycled aggregate replacement rate of 50% and a phase change material content of 8%
图13 不同再生骨料取代率下相变材料掺量为8%的相变混凝土损伤云图
Fig.13 Damage contour plots of phase change concrete with a phase change material content of 8% at varying recycled aggregate replacement rate
| [1] | 徐长全. 被动式太阳房重质储热系统热性能实验研究[D]. 大连: 大连理工大学, 2014. |
| XU C Q. Experimental study on the thermal performance of passive solar building heavy heat storage system[D]. Dalian: Dalian University of Technology, 2014 (in Chinese). | |
| [2] | 王鹏, 徐时贤, 李国红, 等. 跨海大桥混凝土服役挑战及检测方法综述[J]. 材料导报, 2023, 37(增刊1): 212-219. |
| WANG P, XU S X, LI G H, et al. Service challenges and detection methods of sea-crossing bridge concrete[J]. Materials Reports, 2023, 37(supplement 1): 212-219 (in Chinese). | |
| [3] |
YEON J H. Thermal behavior of cement mortar embedded with low-phase transition temperature PCM[J]. Construction and Building Materials, 2020, 252: 119168.
DOI URL |
| [4] |
TIAN Y, LAI Y M, QIN Z P, et al. Numerical investigation on the thermal control performance and freeze-thaw resistance of a composite concrete pier with microencapsulated phase change materials[J]. Solar Energy, 2022, 231: 970-984.
DOI URL |
| [5] | 于本田, 陈延飞, 李双洋, 等. 正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化[J]. 复合材料学报, 2022, 39(6): 2864-2874. |
| YU B T, CHEN Y F, LI S Y, et al. Preparation and freeze-thaw damage evolution of n-tetradecane/graphite low-temperature phase change cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2864-2874 (in Chinese). | |
| [6] | 陈鹏. 相变抗冻混凝土的制备及抗冻效果评价[D]. 西安: 西京学院, 2020. |
| CHEN P. Preparation of phase change antifreeze concrete and evaluation of frost resistance effect[D]. Xi’an: Xijing University, 2020 (in Chinese). | |
| [7] | 田艳. 相变储能混凝土制备及热力特性研究[D]. 兰州: 兰州大学, 2023. |
| TIAN Y. Preparation and thermal properties of phase change energy storage concrete[D]. Lanzhou: Lanzhou University, 2023 (in Chinese). | |
| [8] | 刘干斌, 苏销淇, 金力涵, 等. 相变钢球混凝土能源桩热力学特性试验和模拟[J]. 湖南大学学报(自然科学版), 2023, 50(11): 136-146. |
| LIU G B, SU X Q, JIN L H, et al. Experiment and simulation on thermodynamic characteristics of phase change steel ball concrete energy pile[J]. Journal of Hunan University (Natural Sciences), 2023, 50(11): 136-146 (in Chinese). | |
| [9] | 梁秋群, 陈宣东, 胡祥. 冻融循环下混凝土中氯离子传输机制细观模拟[J]. 硅酸盐通报, 2024, 43(6): 2102-2110. |
| LIANG Q Q, CHEN X D, HU X. Mesoscopic simulation of chloride ion transport mechanism in concrete under freeze-thaw cycles[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2102-2110 (in Chinese). | |
| [10] | 雷斌, 黄威武, 王时彦, 等. 再生骨料混凝土在荷载-冻融条件下的多场耦合数值模拟[J]. 南昌大学学报(工科版), 2023, 45(2): 144-153. |
| LEI B, HUANG W W, WANG S Y, et al. Multi field coupling numerical simulation of recycled aggregate concrete under freeze-thaw conditions[J]. Journal of Nanchang University (Engineering & Technology), 2023, 45(2): 144-153 (in Chinese). | |
| [11] | 郭常凯, 王磊, 章青. 基于COMSOL平台的水工混凝土冻融损伤模型试验验证与应用[J]. 混凝土, 2023(2): 40-48. |
| GUO C K, WANG L, ZHANG Q. Validation and application of hydraulic concrete freeze-thaw damage model test based on COMSOL platform[J]. Concrete, 2023(2): 40-48 (in Chinese). | |
| [12] | 郭宗伦. 冻融与锈蚀耦合作用下寒冷海域RC桥墩抗震性能研究[D]. 大连: 大连理工大学, 2024. |
| GUO Z L. Research on seismic performance of RC bridge piers in cold sea areas under the coupling effect of freeze-thaw and rust[D]. Dalian: Dalian University of Technology, 2024 (in Chinese). | |
| [13] |
FULLER W B, THOMPSON S E. The laws of proportioning concrete[J]. Transactions of the American Society of Civil Engineers, 1907, 59(2): 67-143.
DOI URL |
| [14] | WALRAVEN J, REINHARDT H. Concrete mechanics. Part a: theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading[J]. Nasa Stirecon Technical Report, 1981, 82: 25417. |
| [15] | 任苗. 硅藻土定形相变储热水泥基材料的制备与性能优化[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
| REN M. Preparation and properties optimization of diatomite phase change thermal cement-based materials[D]. Harbin: Harbin Institute of Technology, 2022 (in Chinese). | |
| [16] | 雷斌, 李召行, 邹俊, 等. 荷载与腐蚀冻融耦合作用下再生混凝土耐久性能试验[J]. 农业工程学报, 2018, 34(20): 169-174. |
| LEI B, LI Z H, ZOU J, et al. Experiment on durability of recycled concrete under coupling multi-factors of load and corrosion freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 169-174 (in Chinese). | |
| [17] | 杜修力, 金浏. 考虑过渡区界面影响的混凝土宏观力学性质研究[J]. 工程力学, 2012, 29(12): 72-79. |
| DU X L, JIN L. Research on the influence of interfacial transition zone on the macro-mechanical properties of concrete[J]. Engineering Mechanics, 2012, 29(12): 72-79 (in Chinese). | |
| [18] | 赵杨. 多尺度混凝土结构细观数值模拟[D]. 湖南: 湖南大学, 2019. |
| ZHAO Y. Meso-numerical simulation of concrete based on multi-scale analysis[D]. Hunan: Hunan University, 2019 (in Chinese). | |
| [19] |
ŠAVIJA B, LUKOVIĆ M, PACHECO J, et al. Cracking of the concrete cover due to reinforcement corrosion: a two-dimensional lattice model study[J]. Construction and Building Materials, 2013, 44: 626-638.
DOI URL |
| [20] | 汪奔, 王弘, 张志强, 等. 基于网格生成的随机凹凸型混凝土骨料细观建模方法[J]. 计算力学学报, 2017, 34(5): 591-596. |
| WANG B, WANG H, ZHANG Z Q. Mesoscopic modeling method of concrete aggregates with arbitrary shapes based on mesh generation[J]. Chinese Journal of Computational Mechanics, 2017, 34(5): 591-596 (in Chinese). | |
| [21] | 杜敏, 金浏, 李冬, 等. 骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J]. 工程力学, 2017, 34(9): 54-63. |
| DU M, JIN L, LI D, et al. Mesoscopic simulation study of the influence of aggregate size on mechanical properties and specimen size effect of concrete subjected to splitting tensile loading[J]. Engineering Mechanics, 2017, 34(9): 54-63 (in Chinese). | |
| [22] |
KWON M S, JIN X H, KIM Y C, et al. Development of microencapsulated PCM concrete with improved strength and long-term thermal performance using MWCNTs[J]. Construction and Building Materials, 2024, 442: 137609.
DOI URL |
| [23] |
ALKHTEEB L, DAWOOD M B. The effect of recycled aggregate on properties of concrete: a review[J]. Hybrid Advances, 2025, 11: 100535.
DOI URL |
| [24] | 段安. 受冻融混凝土本构关系研究和冻融过程数值模拟[D]. 北京: 清华大学, 2009. |
| DUAN A. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process[D]. Beijing: Tsinghua University, 2009 (in Chinese). | |
| [25] | 张田, 侯正猛, 李晓琴, 等. 混凝土塑性损伤模型参数计算方法研究[J]. 计算力学学报, 2024, 41(6): 1130-1137. |
| ZHANG T, HOU Z M, LI X Q, et al. Research on the calculation of model parameters for concrete plastic damage model in abaqus[J]. Chinese Journal of Computational Mechanics, 2024, 41(6): 1130-1137 (in Chinese). | |
| [26] | 方金杰. 基于细观模型的再生混凝土拉伸应力-应变全曲线研究[D]. 福州: 福州大学, 2018. |
| FANG J J. Study on tensile stress strain curve of recycled concrete based on meso-scale model[D]. Fuzhou: Fuzhou University, 2018 (in Chinese). | |
| [27] |
GARBOCZI E J, BENTZ D P. Analytical formulas for interfacial transition zone properties[J]. Advanced Cement Based Materials, 1997, 6(3/4): 99-108.
DOI URL |
| [28] |
ZHAO X H, CHEN W F. Effective elastic moduli of concrete with interface layer[J]. Computers & Structures, 1998, 66(2/3): 275-288.
DOI URL |
| [29] |
LUTZ M P, MONTEIRO P J M, ZIMMERMAN R W. Inhomogeneous interfacial transition zone model for the bulk modulus of mortar[J]. Cement and Concrete Research, 1997, 27(7): 1113-1122.
DOI URL |
| [30] |
YANG C C. Effect of the transition zone on the elastic moduli of mortar[J]. Cement and Concrete Research, 1998, 28(5): 727-736.
DOI URL |
| [31] | 郑丽华. 考虑细观的水泥混凝土养生变异性研究[D]. 西安: 长安大学, 2010. |
| ZHENG L H. Study on curing variability of cement concrete considering microscopic[D]. Xi’an: Chang’an University, 2010 (in Chinese). | |
| [32] | 唐春安, 朱万成. 混凝土损伤与断裂: 数值试验[M]. 北京: 科学出版社, 2003. |
| TANG C A, ZHU W C. Damage and fracture of concrete: a numerical experiment[M]. Beijing: Science Press, 2003 (in Chinese). | |
| [33] | 宿辉, 党承华, 李彦军. 考虑不均质度的岩石声发射数值模拟研究[J]. 岩土力学, 2011, 32(6): 1886-1890. |
| SU H, DANG C H, LI Y J. Study of numerical simulation of acoustic emission in rock of inhomogeneity[J]. Rock and Soil Mechanics, 2011, 32(6): 1886-1890 (in Chinese). | |
| [34] |
RAO G A, RAGHU PRASAD B K. Influence of the roughness of aggregate surface on the interface bond strength[J]. Cement and Concrete Research, 2002, 32(2): 253-257.
DOI URL |
| [35] | 周翠. 砂浆-天然骨料界面力学性能研究[D]. 大连: 大连理工大学, 2014. |
| ZHOU C. Experimental studies on mechanical properties of mortar-natural aggregate interface[D]. Dalian: Dalian University of Technology, 2014 (in Chinese). | |
| [36] |
RAMESH G, SOTELINO E D, CHEN W F. Effect of transition zone on elastic moduli of concrete materials[J]. Cement and Concrete Research, 1996, 26(4): 611-622.
DOI URL |
| [37] | 邓存武. 再生混凝土细观数值模拟分析[D]. 武汉: 华中科技大学, 2020. |
| DENG C. Microscopic numerical simulation analysis of recycled concrete[D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese). | |
| [38] | 李清富, 匡一航, 郭威. CDP模型参数计算及取值方法验证[J]. 郑州大学学报(工学版), 2021, 42(2): 43-48. |
| LI Q F, KUANG Y H, GUO W. CDP model parameters calculation and value method verification[J]. Journal of Zhengzhou University(Engineering Science), 2021, 42(2): 43-48 (in Chinese). | |
| [39] | 王琼与, 桑登峰, 娄学谦, 等. 混凝土损伤塑性模型参数选取及应用[J]. 水运工程, 2023(6): 26-31+50. |
| WANG Q Y, SANG D F, LOU X Q, et al. Parameter selection and application of concrete damage plasticity model[J]. Port & Waterway Engineering, 2023(6): 26-31+50 (in Chinese). | |
| [40] | 周禹辛. 冻融环境下混凝土的动态数值模拟分析[D]. 大连: 大连理工大学, 2019. |
| ZHOU Y X. Dynamic numerical simulation analysis of concrete under freeze-thaw environment[D]. Dalian: Dalian University of Technology, 2019 (in Chinese). | |
| [41] | 孟智田, 李宗利. 基于损伤模型的混凝土冻融循环过程数值模拟研究[J]. 水资源与水工程学报, 2024, 35(4): 136-143+152. |
| MENG Z T, LI Z L. Numerical simulation of concrete freeze-thaw cycles based on damage model[J]. Journal of Water Resources and Water Engineering, 2024, 35(4): 136-143+152 (in Chinese). | |
| [42] | 祝文化, 李建雄, 张明中. 混凝土损伤裂纹的二维数字图像盒维数算法[J]. 武汉理工大学学报, 2008, 30(6): 60-62. |
|
ZHU W H, LI J X, ZHANG M Z. 2D digital image box-counting dimension calculational method of cracks on damaged concrete[J]. Journal of Wuhan University of Technology, 2008, 30(6): 60-62 (in Chinese).
DOI URL |
|
| [43] |
NAYAK S, ANOOP KRISHNAN N M, DAS S. Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements[J]. Construction and Building Materials, 2019, 201: 246-256.
DOI URL |
| [44] |
TIAN Y, QIN Z P, LIN Z Z, et al. Study on the physical mechanical properties and freeze-thaw resistance of energy storage concrete with artificial phase change aggregate[J]. Journal of Building Engineering, 2025, 99: 111506.
DOI URL |
| [45] |
LI D S, SUN B X, YANG L J, et al. Mechanical and thermal properties of recycled coarse aggregate concrete incorporating microencapsulated phase change materials and recycled tire rubber granules and its freeze-thaw resistance[J]. Journal of Building Engineering, 2025, 101: 111821.
DOI URL |
| [46] |
YEON J H, KIM K K. Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement[J]. Construction and Building Materials, 2018, 177: 202-209.
DOI URL |
| [47] |
LEI B, LI W G, TANG Z, et al. Durability of recycled aggregate concrete under coupling mechanical loading and freeze-thaw cycle in salt-solution[J]. Construction and Building Materials, 2018, 163: 840-849.
DOI URL |
| [1] | 黄正涛, 关骏骁, 牛亚鹏, 崔艺铖, 何雄飞. 水泥稳定再生碎石的路用性能试验研究[J]. 硅酸盐通报, 2026, 45(1): 359-366. |
| [2] | 义启贵, 湛缕金, 刘祥, 许瑞天, 梁莹, 陈宗平. 碳酸氢钠溶液碳化:一种提高再生骨料混凝土性能的新方法[J]. 硅酸盐通报, 2025, 44(9): 3227-3237. |
| [3] | 吕洁琴, 袁豪, 高玲, 王岩, 顾杨, 孙仁娟. 磨耗对再生混凝土骨料物理性能及表观形态的影响[J]. 硅酸盐通报, 2025, 44(9): 3218-3226. |
| [4] | 王佳慧, 王凤池, 孙畅. 回收轮胎聚合物纤维水泥改良碳酸盐渍土抗冻性能研究[J]. 硅酸盐通报, 2025, 44(7): 2720-2729. |
| [5] | 梁云, 喻秋淳, 邓永杰, 董思伽, 李维红, 李栋伟. 喷射打印超速凝磷酸镁水泥涂层的粘结强度与耐久性[J]. 硅酸盐通报, 2025, 44(6): 1967-1978. |
| [6] | 范嘉慧, 张艺珂, 元成方. 黄河砂高延性水泥基复合材料的冻融损伤特性与模型研究[J]. 硅酸盐通报, 2025, 44(6): 2060-2069. |
| [7] | 任恩重, 张翔, 董珑慧. 冻融循环下灌浆修复裂缝混凝土试件力学特性研究[J]. 硅酸盐通报, 2025, 44(6): 2135-2148. |
| [8] | 倪静, 朱莉莉, 耿雪玉. 生物聚合物联合纤维固化黄土的耐久性研究[J]. 硅酸盐通报, 2025, 44(6): 2222-2232. |
| [9] | 刘昊信, 乔宏霞, 马法荣, 付勇, 魏定邦, 张磊. 复合盐冻融循环下机制砂混凝土的劣化规律及寿命预测[J]. 硅酸盐通报, 2025, 44(5): 1634-1645. |
| [10] | 钟传利, 苏旭, 张亮, 孔子航, 李海天, 朱庆楠, 常洪雷. 碳化再生细骨料对再生砂浆与混凝土力学性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1468-1476. |
| [11] | 黄亮, 李北星, 杨宇程, 田沈华. 矿物质降黏剂对再生骨料混凝土流变、力学与耐久性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1458-1467. |
| [12] | 薛刚, 姚文龙, 邵建文, 朱浩君, 许胜, 董伟. 冻融循环对橡胶混凝土抗疲劳性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1448-1457. |
| [13] | 孙小飞, 吴天乾, 余振鹏, 潘丽君. 钢纤维再生混凝土劈裂拉伸力学性能与破坏机理[J]. 硅酸盐通报, 2025, 44(3): 883-891. |
| [14] | 朱蕾, 孙金婷, 贾鸿涛, 侯磊, 李烁, 郭新晨. 建筑废弃物再生骨料替代天然骨料碳减排核算方法学[J]. 硅酸盐通报, 2025, 44(2): 642-650. |
| [15] | 金唐鱼, 彭帅, 余振鹏, 吴天乾. 冻融循环后高强高性能混凝土劈裂拉伸力学性能尺寸效应研究[J]. 硅酸盐通报, 2025, 44(10): 3609-3619. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||