[1] 孙江涛, 吴定略, 曹亮宏, 等. 混合砂高强高性能混凝土性能研究[J]. 混凝土, 2019, 41(9): 146-149.
SUN J T, WU D L, CAO L H, et al. Study on the performance of the mixed sand high strength concrete[J]. Concrete, 2019, 41(9): 146-149 (in Chinese).
[2] 邓祥辉, 张 鹏, 王 睿, 等. 青藏高原地区纤维混凝土抗冻耐久性试验与损伤模型研究[J]. 硅酸盐通报, 2023, 42(9): 3143-3153.
DENG X H, ZHANG P, WANG R, et al. Frost resistance durability and damage model of fiber concrete in Xizang Plateau area[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3143-3153 (in Chinese).
[3] 向君正, 宋 慧, 冷梦辉, 等. 透水混凝土冻融剥蚀成因分析[J]. 硅酸盐通报, 2021, 40(7): 2215-2224.
XIANG J Z, SONG H, LENG M H, et al. Cause analysis of freeze-thaw erosion of pervious concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2215-2224 (in Chinese).
[4] 刘宏波, 贾小静, 张博洋, 等. 双掺石墨烯-氧化石墨烯再生粗骨料混凝土力学性能和抗冻耐久性研究[J]. 硅酸盐通报, 2024, 43(9): 3359-3367.
LIU H B, JIA X J, ZHANG B Y, et al. Mechanical properties and frost resistance durability of recycled coarse aggregate concrete dual doping graphene and oxide-graphene[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3359-3367 (in Chinese).
[5] KARAKURT C, BAYAZIT Y. Freeze-thaw resistance of normal and high strength concretes produced with fly ash and silica fume[J]. Advances in Materials Science and Engineering, 2015, 2015(1): 830984.
[6] MA H X, YU H F, LI C, et al. Freeze-thaw damage to high-performance concrete with synthetic fibre and fly ash due to ethylene glycol deicer[J]. Construction and Building Materials, 2018, 187: 197-204.
[7] WANG R J, HU Z Y, LI Y, et al. Review on the deterioration and approaches to enhance the durability of concrete in the freeze-thaw environment[J]. Construction and Building Materials, 2022, 321: 126371.
[8] 冯 博, 刘 青, 钱永久. 高性能混凝土在氯盐侵蚀和冻融循环作用下的耐久性分析[J]. 西南交通大学学报, 2023, 58(5): 1083-1089.
FENG B, LIU Q, QIAN Y J. Durability analysis of high-performance concrete under chloride salt erosion and freeze-thaw cycles[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1083-1089 (in Chinese).
[9] LIU F, TANG R, MA W W, et al. Analysis on frost resistance and pore structure of phase change concrete modified by nano-SiO2 under freeze-thaw cycles[J]. Measurement, 2024, 230: 114524.
[10] HUANG C H, NANTUNG T, FENG Y N, et al. Effect of colloidal nano silica on the freeze-thaw resistance and air void system of Portland cement concrete[J]. Journal of Building Engineering, 2024, 86: 108888.
[11] HEIDARI-RARANI M, ALIHA M R M, SHOKRIEH M M, et al. Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings-an experimental study[J]. Construction and Building Materials, 2014, 64: 308-315.
[12] JIN L, FAN M Y, YU W X, et al. Effect of fibre content on low-temperature failure strength and toughness of different sized BFRC under static and dynamic loadings: an experimental study[J]. Engineering Fracture Mechanics, 2025, 314: 110737. [13] GUAN J F, LIU L, YAO X H, et al. Study on the strength size effect of wastewater concrete under freeze-thaw cycles[J]. Construction and Building Materials, 2024, 438: 137074.
[14] ZHANG M J, YU H F, GONG X, et al. Size effect on tensile strength of interface between coarse aggregate and mortar under freeze-thaw cycle[J]. Journal of Building Engineering, 2023, 75: 106939.
[15] DONG F Y, WANG H P, YU J T, et al. Effect of freeze-thaw cycling on mechanical properties of polyethylene fiber and steel fiber reinforced concrete[J]. Construction and Building Materials, 2021, 295: 123427.
[16] YU Z P, WU T Q, SUN X J, et al. Fracture mechanical properties and failure mechanism of high-performance concrete after freeze-thaw cycles[J]. Engineering Fracture Mechanics, 2025, 315: 110795.
[17] TANG T. Effects of load-distributed width on split tension of unnotched and notched cylindrical specimens[J]. Journal of Testing and Evaluation, 1994, 22(5): 401-409.
[18] WANG Y F, ZHANG J C, DU G F, et al. Synergistic effects of polypropylene fiber and basalt fiber on the mechanical properties of concrete incorporating fly ash ceramsite after freeze-thaw cycles[J]. Journal of Building Engineering, 2024, 91: 109593.
[19] 王 月, 安明喆, 余自若, 等. 氯盐侵蚀与冻融循环耦合作用下C50高性能混凝土的耐久性研究[J]. 中国铁道科学, 2014, 35(3): 41-46.
WANG Y, AN M Z, YU Z R, et al. Durability of C50 high performance concrete under the coupled action of chloride salt erosion and freeze-thaw cycle[J]. China Railway Science, 2014, 35(3): 41-46 (in Chinese).
[20] CHEN B, CHEN J L, CHEN X D, et al. Experimental study on compressive strength and frost resistance of steam cured concrete with mineral admixtures[J]. Construction and Building Materials, 2022, 325: 126725.
[21] 王晨霞, 刘 路, 曹芙波, 等. 冻融循环后再生混凝土力学性能试验研究[J]. 建筑结构学报, 2020, 41(12): 193-202.
WANG C X, LIU L, CAO F B, et al. Experimental study on mechanical properties of recycled concrete after freeze-thaw cycles[J]. Journal of Building Structures, 2020, 41(12): 193-202 (in Chinese).
[22] BAŽANT Z P, PLANAS J. Fracture and size effect in concrete and other quasibrittle materials[M]. London: Routledge, 2019.
[23] YU Z P, YANG Q, ZHANG J, et al. Research on uniaxial mechanical performance of high-performance concrete after high temperature rapid cooling and damage mechanism analysis[J]. Journal of Building Engineering, 2024, 86: 108921. |