[1] 陈 妤, 刘荣桂, 付 凯. 冻融循环下海工预应力混凝土结构的耐久性[J]. 建筑材料学报, 2009, 12(1): 17-21. CHEN Y, LIU R G, FU K. Durability for marine pre-stressed structures with freezing-thawing cycles[J]. Journal of Building Materials, 2009, 12(1): 17-21 (in Chinese). [2] 韩 冰, 曹 健, 董敬勋. 持续荷载作用对粉煤灰混凝土冻融性能的影响[J]. 中国铁道科学, 2012, 33(2): 33-37. HAN B, CAO J, DONG J X. Influence of sustainable loading on the freezing and thawing performance of fly ash concrete[J]. China Railway Science, 2012, 33(2): 33-37 (in Chinese). [3] 邹超英, 赵 娟, 梁 锋, 等. 冻融环境下混凝土应力-应变关系的试验研究[J]. 哈尔滨工业大学学报, 2007, 39(2): 229-231. ZOU C Y, ZHAO J, LIANG F, et al. Experim ental study on stress-strain relationsh ip of concrete in freeze-thaw environm ent[J]. Journal of Harbin Institute of Technology, 2007, 39(2): 229-231 (in Chinese). [4] 邹超英, 赵 娟, 梁 锋, 等. 冻融作用后混凝土力学性能的衰减规律[J]. 建筑结构学报, 2008, 29(1): 117-123+138. ZOU C Y, ZHAO J, LIANG F, et al. Degradation of mechanical properties of concrete caused by freeze-thaw action[J]. Journal of Building Structures, 2008, 29(1): 117-123+138 (in Chinese). [5] 曹大富, 富立志, 秦晓川, 等. 冻融循环作用下混凝土的受拉本构特征[J]. 江苏大学学报(自然科学版), 2011, 32(3): 359-363. CAO D F, FU L Z, QIN X C, et al. Experiment of tensile constitutive characteristics of concrete after freeze-thaw cycles[J]. Journal of Jiangsu University (Natural Science Edition), 2011, 32(3): 359-363 (in Chinese). [6] 曹大富, 富立志, 杨忠伟, 等. 冻融循环作用下混凝土受压本构特征研究[J]. 建筑材料学报, 2013, 16(1): 17-23+32. CAO D F, FU L Z, YANG Z W, et al. Study on constitutive relations of compressed concrete subjected to action of freezing-thawing cycles[J]. Journal of Building Materials, 2013, 16(1): 17-23+32 (in Chinese). [7] 李家正, 周世华, 石 妍. 冻融循环过程中混凝土性能的劣化研究[J]. 长江科学院院报, 2011, 28(10): 171-174. LI J Z, ZHOU S H, SHI Y. Deterioration of concrete properties during freeze-thaw cycles[J]. Journal of Yangtze River Scientific Research Institute, 2011, 28(10): 171-174 (in Chinese). [8] 段 安, 钱稼茹. 混凝土冻融过程数值模拟与分析[J]. 清华大学学报(自然科学版), 2009(9): 9-13. DUAN A, QIAN J R. Mathematical modeling and analysis of concrete subjected to freeze-thaw cycles[J]. Journal of Tsinghua University (Science and Technology), 2009(9): 9-13 (in Chinese). [9] 张益多, 汪 鑫, 史 康. 预应力混凝土构件冻融环境下疲劳数值模拟[J]. 建筑材料学报, 2017, 20(5): 733-738. ZHANG Y D, WANG X, SHI K. Numerical simulation of prestressed concrete components subjected to fatigue loading and freezing-thawing cycles[J]. Journal of Building Materials, 2017, 20(5): 733-738 (in Chinese). [10] 李 妍, 赵荣华, 余航艇. 季冻地区大体积混凝土冻融破坏的数值模拟研究[J]. 吉林建筑大学学报, 2020, 37(6): 7-12+27. LI Y, ZHAO R H, YU H T. Numerical simulation study of freeze-thaw failure of mass reinforced concrete in seasonal freezing area[J]. Journal of Jilin Jianzhu University, 2020, 37(6): 7-12+27 (in Chinese). [11] 姜 瑜, 郭 飞, 孔 恒, 等. 注浆材料的现状与发展策略[J]. 化工新型材料, 2022, 50(1): 282-286. JIANG Y, GUO F, KONG H, et al. Current situation and development strategy of grouting material[J]. New Chemical Materials, 2022, 50(1): 282-286 (in Chinese). [12] 张立群, 胡靖宇, 于东超, 等. 冻融条件下桥梁桥台混凝土裂缝加固效果的试验研究[J]. 新型建筑材料, 2019, 46(5): 62-66. ZHANG L Q, HU J Y, YU D C, et al. Experimental study on concrete crack reinforcement under freezing and thawing condition[J]. New Building Materials, 2019, 46(5): 62-66 (in Chinese). [13] 朱红兵, 郭正发, 韩 蓓, 等. 陶粒混凝土-普通混凝土环氧树脂界面冻融后抗剪性能试验研究[J]. 西安建筑科技大学学报(自然科学版), 2023, 55(4): 578-584. ZHU H B, GUO Z F, HAN B, et al. Experimental study on shear resistance properties of epoxy resin interface of ordinary concrete members-lightweight ceramsite concrete after freeze-thaw[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2023, 55(4): 578-584 (in Chinese). [14] 谢 剑, 陈玉洁, 孙雅丹. UHPC与普通混凝土试件界面黏结抗冻性能试验研究[J]. 硅酸盐通报, 2021, 40(12): 3945-3955. XIE J, CHEN Y J, SUN Y D. Experimental study on interfacial antifreeze performance of UHPC and normal concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 3945-3955 (in Chinese). [15] 刘学伟, 王 赛, 刘 滨, 等. 不同注浆材料填充双裂隙类岩石试样力学特性研究[J]. 岩石力学与工程学报, 2024, 43(3): 623-638. LIU X W, WANG S, LIU B, et al. Effect of filling grouting material on mechanical properties and mechanism of rock-like samples with double-crack[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(3): 623-638 (in Chinese). [16] 宋勇军, 孙银伟, 李晨婧, 等. 基于离散元法模拟的冻融砂岩细观破裂演化特征研究[J]. 岩土力学, 2023, 44(12): 3602-3616. SONG Y J, SUN Y W, LI C J, et al. Meso-fracture evolution characteristics of freeze-thawed sandstone based on discrete element method simulation[J]. Rock and Soil Mechanics, 2023, 44(12): 3602-3616 (in Chinese). [17] 周昌林, 朱哲明, 朱爱军, 等. 酸雨腐蚀对混凝土材料断裂特性的影响[J]. 工程科学与技术, 2019, 51(1): 144-151. ZHOU C L, ZHU Z M, ZHU A J, et al. Deterioration of fracture characteristics for concrete material under acid rain environment[J]. Advanced Engineering Sciences, 2019, 51(1): 144-151 (in Chinese). [18] 李中华, 巴恒静, 邓宏卫. 混凝土抗冻性试验方法及评价参数的研究评述[J]. 混凝土, 2006(6): 9-11+14. LI Z H, BA H J, DENG H W. Evaluation of the study on the test method about the frost resistance of concrete and the appraising parameter[J]. Concrete, 2006(6): 9-11+14 (in Chinese). [19] 张嘉凡, 徐荣平, 刘 洋, 等. 冻融循环作用下注浆裂隙岩体微观孔隙演化规律及剪切力学行为研究[J]. 岩石力学与工程学报, 2022, 41(4): 676-690. ZHANG J F, XU R P, LIU Y, et al. Study on micro-pore evolution law and shear mechanical behavior of grouting fractured rock mass under freeze-thaw cycle[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4): 676-690 (in Chinese). [20] 张嘉凡, 徐荣平, 刘 洋, 等. 冻融循环作用下注浆裂隙岩体力学特性试验研究[J]. 实验力学, 2021, 36(3): 378-388. ZHANG J F, XU R P, LIU Y, et al. Experimental study on mechanical properties of grouted fractured rock mass under freeze-thaw cycles[J]. Journal of Experimental Mechanics, 2021, 36(3): 378-388 (in Chinese). [21] 彭 霞, 饶秋华, 李 卓, 等. 基于球面对称设计的离散元细观参数定量确定方法[J]. 中南大学学报(自然科学版), 2019, 50(11): 2801-2812. PENG X, RAO Q H, LI Z, et al. Quantitative determination method of mesoscopic parameters of discrete elements based on spherical symmetric design[J]. Journal of Central South University (Science and Technology), 2019, 50(11): 2801-2812 (in Chinese). [22] EBRAHIMI K, DAIEZADEH M J, ZAKERTABRIZI M, et al. A review of the impact of micro- and nanoparticles on freeze-thaw durability of hardened concrete: mechanism perspective[J]. Construction and Building Materials, 2018, 186: 1105-1113. [23] PENG R X, QIU W L, TENG F. Three-dimensional meso-numerical simulation of heterogeneous concrete under freeze-thaw[J]. Construction and Building Materials, 2020, 250: 118573. [24] 张士萍, 邓 敏, 唐明述. 混凝土冻融循环破坏研究进展[J]. 材料科学与工程学报, 2008, 26(6): 990-994. ZHANG S P, DENG M, TANG M S. Advance in research on damagement of concrete due to freeze-thaw cycles[J]. Journal of Materials Science and Engineering, 2008, 26(6): 990-994 (in Chinese). [25] 朱谭谭, 李 昂, 黄 达, 等. 应力-冻融耦合作用下砂岩变形与损伤特征研究[J]. 岩石力学与工程学报, 2023, 42(2): 342-351. ZHU T T, LI A, HUANG D, et al. Deformation and damage characteristics of sandstone under the combined action of stress and freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 342-351 (in Chinese). [26] 刘泉声, 黄诗冰, 康永水, 等. 低温饱和岩石未冻水含量与冻胀变形模型研究[J]. 岩石力学与工程学报, 2016, 35(10): 2000-2012. LIU Q S, HUANG S B, KANG Y S, et al. Study of unfrozen water content and frost heave model for saturated rock under low temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2000-2012 (in Chinese). [27] 宿 辉, 唐 阳, 聂汉江. 基于PFC2D不同细观参数对生态混凝土宏观破坏分析[J]. 科学技术与工程, 2014, 14(28): 118-124. SU H, TANG Y, NIE H J. The analysis of the macro failure for ecological concrete based on PFC2D different mesoscopic parameters[J]. Science Technology and Engineering, 2014, 14(28): 118-124 (in Chinese). [28] LI W S, SHAIKH F U A, WANG L G, et al. Experimental study on shear property and rheological characteristic of superfine cement grouts with nano-SiO2 addition[J]. Construction and Building Materials, 2019, 228: 117046. [29] 赵国彦, 戴 兵, 马 驰. 平行黏结模型中细观参数对宏观特性影响研究[J]. 岩石力学与工程学报, 2012, 31(7): 1491-1498. ZHAO G Y, DAI B, MA C. Study of effects of microparameters on macroproperties for parallel bonded model[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1491-1498 (in Chinese). [30] 阿比尔的, 郑颖人, 冯夏庭, 等. 平行黏结模型宏细观力学参数相关性研究[J]. 岩土力学, 2018, 39(4): 1289-1301. ABI E, ZHENG Y R, FENG X T, et al. Relationship between particle micro and macro mechanical parameters of parallel-bond model[J]. Rock and Soil Mechanics, 2018, 39(4): 1289-1301 (in Chinese). |