[1] LI Q D, WANG X Y, ZOU Z S, et al. Dynamic behaviour of manufactured sand shotcrete at early age[J]. Construction and Building Materials, 2023, 368: 130424. [2] ZHOU A X, QIAN R S, MIAO G X, et al. Gas permeability characteristics of granite-manufactured sand concrete and its numerical simulation using NMR-MIP modified method[J]. Construction and Building Materials, 2024, 431: 136520. [3] SHEN W G, LIU Y, WANG Z W, et al. Influence of manufactured sand's characteristics on its concrete performance[J]. Construction and Building Materials, 2018, 172: 574-583. [4] 李 刊, 魏智强, 乔宏霞, 等. 耦合盐溶液环境下钢筋/混凝土Weibull耐久性寿命预测方法[J]. 复合材料学报, 2021, 38(7): 2370-2382. LI K, WEI Z Q, QIAO H X, et al. Weibull durability life prediction method of reinforced concrete in environment of coupled saltsolution[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2370-2382 (in Chinese). [5] XIA D T, YU S T, YU J L, et al. Damage characteristics of hybrid fiber reinforced concrete under the freeze-thaw cycles and compound-salt attack[J]. Case Studies in Construction Materials, 2023, 18: e01814. [6] CUI Z, ALIPOUR A. Concrete cover cracking and service life prediction of reinforced concrete structures in corrosive environments[J]. Construction and Building Materials, 2018, 159: 652-671. [7] FENG Z J, HUO J W, HU H B, et al. Research on corrosion damage and bearing characteristics of bridge pile foundation concrete under a dry-wet-freeze-thaw cycle[J]. Advances in Civil Engineering, 2021, 2021(1): 8884396. [8] SU D Y, PANG J Y, HUANG X W. Experimental study on the influence of rubber content on chloride salt corrosion resistance performance of concrete[J]. Materials, 2021, 14(16): 4706. [9] 苑立冬, 牛荻涛, 姜 磊, 等. 硫酸盐侵蚀与冻融循环共同作用下混凝土损伤研究[J]. 硅酸盐通报, 2013, 32(6): 1171-1176. YUAN L D, NIU D T, JIANG L, et al. Study on damage of concrete under the combined action of sulfate attack and freeze-thaw cycle[J]. Building of the Chinese Ceramic Society, 2013, 32(6): 1171-1176 (in Chinese). [10] 刘 辉. 硫酸盐侵蚀与冻融循环双重因素对混凝土耐久性的影响[D]. 成都: 西南交通大学, 2013. LIU H. Influence of sulfate attack and freeze-thaw cycle on concrete durability[D].Chengdu: Southwest Jiaotong University, 2013 (in Chinese). [11] 朱翔琛, 张云升, 刘志勇, 等. 基于核磁共振技术的硫酸盐冻融下机制骨料混凝土孔结构演变规律研究[J]. 复合材料学报, 2024, 41(10): 5478-5491. ZHU X C, ZHANG Y S, LIU Z Y, et al. Study on the evolution of pore structure of manufactured aggregate concrete undersulfate freeze-thaw based on nuclear magnetic resonance technology [J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5478-5491 (in Chinese). [12] XIAO Q H, LI Q, CAO Z Y, et al. The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack[J]. Construction and Building Materials, 2019, 200: 344-355. [13] GAN L, XU W C, SHEN Z Z, et al. Experimental and numerical investigations on damage evolution of concrete under sulfate attack and freeze-thaw cycles[J]. Journal of Building Engineering, 2023, 71: 106469. [14] 陈少杰, 任建喜, 刘 浪, 等. 冻融与盐蚀耦合作用下混凝土的细观特征与损伤演化规律[J]. 硅酸盐学报, 2024, 52(11): 3524-3536. CHEN S J, REN J X, LIU L, et al. Mesoscopic characteristics and damage evolution of concrete under the combined action of freeze-thaw and salt erosion[J]. Journal of the Chinese Ceramic Society, 2024, 52(11): 3524-3536 (in Chinese). [15] 杨全兵. 混凝土盐冻破坏机理(Ⅱ): 冻融饱水度和结冰压[J]. 建筑材料学报, 2012, 15(6): 741-746. YANG Q B. One of mechanisms on the deicer-frost scaling of concrete(Ⅱ): degree of saturation and ice-formation pressure during freezing-thawing cycles[J]. Journal of Building Materials, 2012, 15(6): 741-746 (in Chinese). [16] CHEN S J, REN J X, LI Y G, et al. Macroscopic and mesoscopic deterioration behaviors of concrete under the coupling effect of chlorine salt erosion and freezing-thawing cycle[J]. Materials, 2021, 14(21): 6471. [17] JIANG W Q, SHEN X H, XIA J, et al. A numerical study on chloride diffusion in freeze-thaw affected concrete[J]. Construction and Building Materials, 2018, 179: 553-565. [18] LI B, MAO J Z, NAWA T, et al. Mesoscopic chloride ion diffusion model of marine concrete subjected to freeze-thaw cycles[J]. Construction and Building Materials, 2016, 125: 337-351. [19] WANG Y, LI J H, UEDA T, et al. Meso-scale mechanical deterioration of mortar subjected to freeze thaw cycles and sodium chloride attack[J]. Cement and Concrete Composites, 2021, 117: 103906. [20] 宿晓萍, 王 清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报(工学版), 2015, 45(1): 112-120. SU X P, WANG Q. Corrosion damage of concrete under multi-salt soaking, freezing-thawing and dry-wet cycles[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(1): 112-120 (in Chinese). [21] 梁咏宁, 黄君一, 林旭健, 等. 氯盐对受硫酸盐腐蚀混凝土性能的影响[J]. 福州大学学报(自然科学版), 2011, 39(6): 947-951. LIANG Y N, HUANG J Y, LIN X J, et al. The effect of chloride on concrete under sulfate attack[J]. Journal of Fuzhou University (Natural Science Edition), 2011, 39(6): 947-951 (in Chinese). [22] ZHANG F, HU Z P, WEI F, et al. Study on concrete deterioration in different NaCl-Na2SO4 solutions and the mechanism of Cl-diffusion[J]. Materials, 2021, 14(17): 5054. [23] 温家馨, 李化建, 石贺男, 等. 寒区无砟轨道机制砂混凝土疲劳性能[J]. 硅酸盐学报, 2024, 52(11): 3383-3393. WEN J X, LI H J, SHI H N, et al. Fatigue properties of mechanized sand concrete for ballastless tracks in cold regions[J]. Journal of the Chinese Ceramic Society, 2024, 52(11): 3383-3393 (in Chinese). [24] 张学鹏, 张戎令, 王小平, 等. 基于Wiener过程理论的盐渍土中混凝土损伤演化及寿命预测[J]. 建筑材料学报, 2023, 26(11): 1192-1199+1206. ZHANG X P, ZHANG R L, WANG X P, et al. Damage evolution and life prediction of concrete in saline soil based on wiener process theory[J]. Journal of Building Materials, 2023, 26(11): 1192-1199+1206 (in Chinese). [25] GAO F F, ZHANG J F. Spatial degradation characteristics and numerical prediction for life of MWCNTs-reinforced concrete by salt freezing[J]. Construction and Building Materials, 2024, 439: 137354. [26] CHENG X, TIAN W, GAO J F, et al. Performance evaluation and lifetime prediction of steel slag coarse aggregate concrete under sulfate attack[J]. Construction and Building Materials, 2022, 344: 128203. [27] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard of test methods for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Construction Industry Press, 2009 (in Chinese). [28] 路承功. 西部严酷环境下钢筋砼耐久性试验研究及寿命预测[D]. 兰州: 兰州理工大学, 2018. LU C G. Experimental study on durability and life prediction of reinforced concrete in harsh environment in Western China[D]. Lanzhou: Lanzhou University of Technology, 2018 (in Chinese). [29] 李 响, 石 妍, 李家正, 等. 含凝灰岩粉复合胶凝材料抗压强度发展规律[J]. 建筑材料学报, 2017, 20(3): 435-438. LI X, SHI Y, LI J Z, et al. Compressive strength development of complex binder containing tuff power[J]. Journal of Building Materials, 2017, 20(3): 435-438 (in Chinese). [30] YU Z, ZHANG H, BAO J, et al. Coupled effects of the freeze-thaw cycles and salt erosion on the performance of recycled aggregate concrete[J]. Journal of Building Engineering, 2024, 95: 110212. [31] ZHANG W G, AKBER M A, HOU S G, et al. Detection of dynamic modulus and crack properties of asphalt pavement using a non-destructive ultrasonic wave method[J]. Applied Sciences, 2019, 9(15): 2946. [32] WANG R J, ZHANG Q J, LI Y. Deterioration of concrete under the coupling effects of freeze-thaw cycles and other actions: a review[J]. Construction and Building Materials, 2022, 319: 126045. [33] 周常宽. 氯盐与冻融复合作用下混凝土耐久性研究[D]. 济南: 山东建筑大学, 2017. ZHOU C K. Study on the durability of concrete subjected to chloride salt and freeze thaw[D]. Jinan: Shandong Jianzhu University, 2017 (in Chinese). [34] 沈达满. 多因素耦合作用下水泥基材料损伤劣化研究[D]. 南京: 东南大学, 2017. SHEN D M. Study on damage and deterioration of cement-based materials under multi-factor coupling[D]. Nanjing: Southeast University, 2017 (in Chinese). [35] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 69-77. ZHANG C L, LIU Q F. Coupling erosion of chlorides and sulfates in reinforced concrete: a review[J]. Materials Reforts, 2022, 36(1): 69-77 (in Chinese). [36] 贡 力, 梁 颖, 宫雪磊, 等. 硫酸盐环境下再生混凝土抗冻耐久性及界面微观结构研究[J]. 应用基础与工程科学学报, 2023, 31(4): 1006-1017. GONG L, LIANG Y, GONG X L, et al. Study on frost resistance durability and interface microstructure of recycled concrete in sulfate environment[J]. Journal of Basic Science and Engineering, 2023, 31(4): 1006-1017 (in Chinese). [37] 李玉根, 张慧梅, 陈少杰, 等. 风积沙混凝土盐冻多尺度劣化机制[J]. 复合材料学报, 2023, 40(4): 2331-2342. LI Y G, ZHANG H M, CHEN S J, et al. Multi-scale degradation mechanism of aeolian sand concrete under salt-frost condition[J].Acta Materiae Compositae Sinica, 2023, 40(4): 2331-2342 (in Chinese). [38] YU J Q, QIAO H X, HAKUZWEYEZU T, et al. Damage and deterioration model of basalt fiber/magnesium oxychloride composites based on GM(1, 1)-markov in the salt spray corrosion environment[J]. Journal of Renewable Materials, 2022, 10(11): 2973-2987. [39] WANG K D, WANG W J, GUO Y D, et al. Grey modeling study on mechanical properties and pore structure of concrete with different basalt fiber contents based on NMR[J]. Journal of Building Engineering, 2024, 89: 109287. [40] 刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用[M]. 5版. 北京: 科学出版社, 2010. LIU S F, DANG Y G, FANG Z G, et al. Grey system theory and its application[M]. 5th ed. Beijing: Science Press, 2010 (in Chinese). [41] 中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准: GB/T 50476—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for durability design of concrete structures: GB/T 50476—2019[S]. Beijing: China Building Industry Press, 2019 (in Chinese). [42] 李金玉, 曹建国, 林 莉, 等. 水工混凝土耐久性研究的新进展[J]. 水力发电, 2001(4): 44-47+67. LI J Y, CAO J G, LIN L, et al. New development of the study on hydraulic concrete durability[J].Water Power, 2001(4): 44-47+67 (in Chinese). [43] DE OLIVEIRA M B, VAZQUEZ E. The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete[J]. Waste Management, 1996, 16(1/2/3): 113-117. |