[1] 陈 锐, 张 星, 郝若愚, 等. 干湿循环下地聚合物固化黄土强度劣化机制与模型研究[J]. 岩土力学, 2022, 43(5): 1164-1174. CHEN R, ZHANG X, HAO R Y, et al. Shear strength deterioration of geopolymer stabilized loess under wet-dry cycles: mechanisms and prediction model[J]. Rock and Soil Mechanics, 2022, 43(5): 1164-1174 (in Chinese). [2] 刘乐青, 张吾渝, 张丙印, 等. 冻融循环作用下黄土无侧限抗压强度和微观规律的试验研究[J]. 水文地质工程地质, 2021, 48(4): 109-115. LIU L Q, ZHANG W Y, ZHANG B Y, et al. Effect of freezing-thawing cycles on mechanical properties and microscopic mechanisms of loess[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 109-115 (in Chinese). [3] ABU ELELLA M H, GODA E S, GAB-ALLAH M A, et al. Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104702. [4] DEHGHAN H, TABARSA A, LATIFI N, et al. Use of xanthan and guar gums in soil strengthening[J]. Clean Technologies and Environmental Policy, 2019, 21(1): 155-165. [5] AYELDEEN M, NEGM A, EL-SAWWAF M, et al. Enhancing mechanical behaviors of collapsible soil using two biopolymers[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(2): 329-339. [6] JIANG T, ZHAO J D, ZHANG J R. Splitting tensile strength and microstructure of xanthan gum-treated loess[J]. Scientific Reports, 2022, 12(1): 9921. [7] SULAIMAN H, TAHA M R, ABD RAHMAN N, et al. Performance of soil stabilized with biopolymer materials-xanthan gum and guar gum[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2022, 128: 103276. [8] 魏世杰, 杨 宇, 王 梓, 等. 黄原胶改良黏土无侧限抗压强度及其加固机理研究[J]. 河北工程大学学报(自然科学版), 2021, 38(2): 66-71. WEI S J, YANG Y, WANG Z, et al. Study on unconfined compressive strength and strengthening mechanism of xanthan gum modified clay[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2021, 38(2): 66-71 (in Chinese). [9] CHENG Z B, GENG X Y. Investigation of unconfined compressive strength for biopolymer treated clay[J]. Construction and Building Materials, 2023, 385: 131458. [10] NI J, ZHAO R J, CHEN J Q, et al. Mechanical and hydraulic characteristics of unvegetated or vegetated loess soils amended with xanthan gum[J]. Transportation Geotechnics, 2024, 48: 101350. [11] CONSOLI N C, CASAGRANDE M D, COOP M R. Effect of Fiber Reinforcement on the isotropic compression behavior of a sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1434-1436. [12] TANG C S, SHI B, CUI Y J, et al. Desiccation cracking behavior of polypropylene fiber-reinforced clayey soil[J]. Canadian Geotechnical Journal, 2012, 49(9): 1088-1101. [13] GOWTHAMAN S, NAKASHIMA K, KAWASAKI S. A state-of-the-art review on soil reinforcement technology using natural plant fiber materials: past findings, present trends and future directions[J]. Materials, 2018, 11(4): 553. [14] 袁 童, 雷学文, 艾 东, 等. 椰壳纤维-MICP复合改良膨胀土强度特性[J]. 水利与建筑工程学报, 2023, 21(3): 105-111. YUAN T, LEI X W, AI D, et al. Strength characteristics of expansive soil improved by coir fibre-MICP composite[J]. Journal of Water Resources and Architectural Engineering, 2023, 21(3): 105-111 (in Chinese). [15] DE MENEZES L C P, DE SOUSA D B, SUKAR S F, et al. Analysis of the physical-mechanical behavior of clayey sand soil improved with coir fiber[J]. Soils and Rocks, 2019, 42(1): 31-42. [16] PACHAURI S, INDU PRIYA M, GARG A. Comparative analysis of strength characteristics of soil reinforced with coir and polypropylene fibers[M]//Lecture Notes in Civil Engineering. Singapore: Springer Singapore, 2018: 355-361. [17] 李良勇, 马炜迪, 曹宝珠. 以天然椰壳纤维加固的红黏土的力学性质研究[J]. 海南大学学报(自然科学版), 2020, 38(3): 304-308. LI L Y, MA W D, CAO B Z. Mechanical properties of red clay reinforced with natural coir fiber[J]. Natural Science Journal of Hainan University, 2020, 38(3): 304-308 (in Chinese). [18] 曹炜强, 李良勇, 张青松, 等. 椰壳纤维加筋红黏土强度特征[J]. 中国科技论文, 2023, 18(12): 1378-1382. CAO W Q, LI L Y, ZHANG Q S, et al. Strength characteristics of the red caly reinforced by coir fiber[J]. China Sciencepaper, 2023, 18(12): 1378-1382 (in Chinese). [19] 秦文帅, 李光范, 胡 伟, 等. 椰壳纤维土的三轴试验研究[J]. 科学技术与工程, 2017, 17(10): 272-276. QIN W S, LI G F, HU W, et al. Study on coir fibre-reinforced soil by triaxial test[J]. Science Technology and Engineering, 2017, 17(10): 272-276 (in Chinese). [20] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Ministry of Water Resource of the Peoples Republic of China. Standard for geotechnical test methods: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019 (in Chinese). [21] NUGENT R A, ZHANG G P, GAMBRELL R P. Effect of exopolymers on the liquid limit of clays and its engineering implications[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2101(1): 34-43. [22] CADMUS M C, JACKSON L K, BURTON K A, et al. Biodegradation of xanthan gum by bacillus sp[J]. Applied and Environmental Microbiology, 1982, 44(1): 5-11. [23] CHANG I, IM J, PRASIDHI A K, et al. Effects of Xanthan gum biopolymer on soil strengthening[J]. Construction and Building Materials, 2015, 74: 65-72. [24] JOGA J R. Effect of xanthan gum biopolymer on dispersive properties of soils[J]. World Journal of Engineering, 2020, 17(4): 563-571. [25] TANG C S, SHI B, ZHAO L Z. Interfacial shear strength of fiber reinforced soil[J]. Geotextiles and Geomembranes, 2010, 28(1): 54-62. [26] CHEN C H, WEI K, GU J Y, et al. Combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil[J]. Polymers, 2022, 14(4): 787. [27] 刘 瑾, 车文越, 郝社锋, 等. 基于CT技术的黄原胶加固土干湿循环条件下力学性能和微观结构劣化机制研究[J]. 岩土工程学报, 2024, 46(5): 1119-1126. LIU J, CHE W Y, HAO S F, et al. Deterioration mechanism of mechanical properties and microstructure in xanthan gum-reinforced soil under wetting-drying cycles based on CT scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1119-1126 (in Chinese). [28] ZHANG L F, HU Z Q, LI H R, et al. Mechanical properties and mesostructure evolution of fibre-reinforced loess under freeze-thaw cycles[J]. Advances in Civil Engineering, 2023, 2023(1): 3847003. [29] BOZYIGIT I, ZINGIL H O, ALTUN S. Performance of eco-friendly polymers for soil stabilization and their resistance to freeze-thaw action[J]. Construction and Building Materials, 2023, 379: 131133. |