欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 103-111.DOI: 10.16552/j.cnki.issn1001-1625.2025.0696

• 水泥混凝土 • 上一篇    下一篇

发泡压力对超轻质硫氧镁水泥基泡沫混凝土性能的影响

周宇通1(), 周正1, 裘吕超1, 鲁旷达1, 徐冬梅1, 张士元1, 张世轩2, 蹇守卫2, 谭洪波2   

  1. 1.国网浙江省电力有限公司电力科学研究院,杭州 310014
    2.武汉理工大学硅酸盐科学与先进建材全国重点实验室,武汉 430070
  • 收稿日期:2025-07-17 修订日期:2025-08-15 出版日期:2026-01-20 发布日期:2026-02-10
  • 作者简介:周宇通(1987—),男,博士,高级工程师。主要从事无机非金属材料研发工作。E-mail:tony006@163.com
  • 基金资助:
    国网浙江省电力有限公司科技项目(5211DS240008)

Effect of Foaming Pressure on Properties of Magnesium Oxysulfate Cement-Based Ultra-Lightweight Foam Concrete

ZHOU Yutong1(), ZHOU Zheng1, QIU Lyuchao1, LU Kuangda1, XU Dongmei1, ZHANG Shiyuan1, ZHANG Shixuan2, JIAN Shouwei2, TAN Hongbo2   

  1. 1. Electric Power Science Research Institute,State Grid Zhejiang Electric Power Co. ,Ltd. ,Hangzhou 310014,China
    2. State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan 430070,China
  • Received:2025-07-17 Revised:2025-08-15 Published:2026-01-20 Online:2026-02-10

摘要:

本研究提出了一种超轻质硫氧镁水泥基泡沫混凝土(MOS-ULFC)制备技术,即在预制泡沫和浆体拌和阶段施加压力、成型过程中释放压力,利用压力差诱导气泡膨胀,提升孔隙率,实现材料超轻质化。系统分析了不同发泡压力对MOS-ULFC密度、力学性能、导热系数及孔结构的影响规律。结果表明,在101~160 kPa,随着发泡压力升高,MOS-ULFC的密度与导热系数显著降低。当发泡压力由101 kPa升至130 kPa时,干密度由157.81 kg/m3降至49.22 kg/m3,降低了68.81%;导热系数由0.069 8 W/(m·K)降至0.037 1 W/(m·K),降低了46.85%;而当发泡压力继续升至160 kPa时,MOS-ULFC的密度与导热系数均有回升,但仍低于常压组(101 kPa)。预制泡沫及浆体拌和阶段施加压力,气泡内部压力显著提高;成型结束后,外压恢复常压,气泡内空气迅速膨胀,导致气泡尺寸明显增大,从而提升平均孔径和孔隙率。当发泡压力由101 kPa升至130 kPa时,泡沫混凝土的平均孔径由78.53 μm增至113.49 μm,增加了44.52%,总孔隙率由91.94%增至96.21%。本研究为泡沫混凝土超轻质化制备提供了新思路。

关键词: 泡沫混凝土, 发泡压力, 密度, 导热系数, 孔结构, 超轻质

Abstract:

This study proposed a preparation technique for magnesium oxysulfate cement-based ultra-lightweight foam concrete (MOS-ULFC), in which pressure is applied during the prefabricated foaming and slurry mixing stages, followed by pressure release during molding. The pressure differential induced bubble expansion, thereby increasing porosity and achieving ultra-lightweight characteristics. The effects of different foaming pressures on the density, mechanical properties, thermal conductivity, and pore structure of MOS-ULFC were systematically analyzed. Results show that, within the range of 101~160 kPa, increasing the foaming pressure markedly reduces the density and thermal conductivity of MOS-ULFC. When the foaming pressure increases from 101 kPa to 130 kPa, the dry density decreases from 157.81 kg/m3 to 49.22 kg/m3, with a reduction of 68.81%, while the thermal conductivity decreases from 0.069 8 W/(m·K) to 0.037 1 W/(m·K), with a reduction of 46.85%. At 160 kPa, both density and thermal conductivity of MOS-ULFC increase slightly but remaine lower than those of the atmospheric-pressure group (101 kPa). Applying pressure during prefabricated foaming and slurry mixing stages significantly increases the internal pressure of bubbles. Upon returning to atmospheric pressure after molding, the trapped air rapidly expands, leading to a substantial increase in bubble size, and consequently, in average pore size and porosity. Specifically, when the foaming pressure increases from 101 kPa to 130 kPa, the average pore size increases from 78.53 μm to 113.49 μm (an increase of 44.52%), while the total porosity increases from 91.94% to 96.21%. This work provides a new approach for the ultra-lightweight design and preparation of foam concrete.

Key words: foam concrete, foaming pressure, density, thermal conductivity, pore structure, ultra-lightweight

中图分类号: