硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 191-201.DOI: 10.16552/j.cnki.issn1001-1625.2025.0647
唐咸远1,2,3(
), 任博文1,2,3(
), 胡冰倩1,2,3, 柳大成1,2,3, 冯美杰1,3
收稿日期:2025-07-03
修订日期:2025-08-27
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
任博文,硕士研究生。E-mail:15977382987@163.com
作者简介:唐咸远(1973—),男,高级工程师。主要从事道路与桥梁工程及超高性能混凝土材料方面的研究。E-mail:thy1188@126.com
基金资助:
TANG Xianyuan1,2,3(
), REN Bowen1,2,3(
), HU Bingqian1,2,3, LIU Dacheng1,2,3, FENG Meijie1,3
Received:2025-07-03
Revised:2025-08-27
Published:2026-01-20
Online:2026-02-10
摘要:
为提升混凝土路面损坏后的快速修补能力并加强固废资源的再利用,在前期研制的环保型钢渣微粉超高性能混凝土(UHPC)的基础上,采用正交试验方法,以普通硅酸盐水泥(OPC)替代硫铝酸盐水泥(SAC)的替代率、早强剂碳酸锂掺量、钢纤维掺量、调凝剂硼砂掺量为影响因素,制备了9组超早强钢渣微粉UHPC。通过测试初凝时间及不同龄期的抗压强度、抗折强度,分析了各因素的影响规律,确定了超早强UHPC的最佳配合比;采用场发射扫描电子显微镜(SEM)和X射线衍射仪(XRD),对不同龄期的超早强UHPC的微观形貌及物相组成进行表征。结果表明:随着OPC替代率增大,UHPC凝结时间先减小后增大,力学性能均呈下降趋势;SAC-OPC体系早期水化反应过快导致水化不完全,后期抗压强度低于基准组;低OPC替代率下,利用钢渣微粉制备的SAC-OPC体系UHPC碱度仍偏低,水化产物中均存在钙矾石(AFt),但未发现氢氧化钙(CH),且AFt含量随着OPC替代率增加而逐渐降低;随着水化反应的不断进行,超早强UHPC基体的孔洞、空隙及裂缝均逐渐缩减,结构趋于密实;综合各因素对SAC-OPC体系混凝土力学性能与施工性能的影响,制备出常规养护情况下初凝时间为30 min且3 h抗压强度、抗折强度分别为39.6、11.2 MPa的超早强环保型钢渣微粉UHPC。
中图分类号:
唐咸远, 任博文, 胡冰倩, 柳大成, 冯美杰. 超早强环保型钢渣微粉UHPC制备及形成机理[J]. 硅酸盐通报, 2026, 45(1): 191-201.
TANG Xianyuan, REN Bowen, HU Bingqian, LIU Dacheng, FENG Meijie. Preparation and Formation Mechanism of Ultra-Early Strength Environmental-Friendly Steel Slag Micro Powder UHPC[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 191-201.
| Materials | Mass fraction/% | Specific surface area/(m2·kg-1) | ||||||
|---|---|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Other | ||
| OPC | 21.86 | 4.25 | 2.72 | 63.65 | 2.14 | 2.43 | 2.95 | 300 |
| SAC | 12.30 | 21.33 | 1.53 | 50.12 | 2.06 | 12.33 | 0.33 | 550 |
| SSMP | 17.15 | 5.60 | 22.70 | 43.35 | 6.00 | — | 5.20 | 620 |
| SF | 93.58 | 0.51 | 0.58 | 1.97 | 0.25 | — | 3.11 | 22 000 |
表1 胶凝材料的化学组成和物理性质
Table 1 Chemical composition and physical properties of cementitious materials
| Materials | Mass fraction/% | Specific surface area/(m2·kg-1) | ||||||
|---|---|---|---|---|---|---|---|---|
| SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Other | ||
| OPC | 21.86 | 4.25 | 2.72 | 63.65 | 2.14 | 2.43 | 2.95 | 300 |
| SAC | 12.30 | 21.33 | 1.53 | 50.12 | 2.06 | 12.33 | 0.33 | 550 |
| SSMP | 17.15 | 5.60 | 22.70 | 43.35 | 6.00 | — | 5.20 | 620 |
| SF | 93.58 | 0.51 | 0.58 | 1.97 | 0.25 | — | 3.11 | 22 000 |
| Factor level | A OPC replacement rate/% | B LC content/% | C Steel fiber content/% | D Bx content/% |
|---|---|---|---|---|
| 1 | 10 | 0.075 | 0 | 0.09 |
| 2 | 20 | 0.100 | 1 | 0.18 |
| 3 | 30 | 0.125 | 2 | 0.27 |
表2 正交试验因素水平
Table 2 Orthogonal experiment factor level
| Factor level | A OPC replacement rate/% | B LC content/% | C Steel fiber content/% | D Bx content/% |
|---|---|---|---|---|
| 1 | 10 | 0.075 | 0 | 0.09 |
| 2 | 20 | 0.100 | 1 | 0.18 |
| 3 | 30 | 0.125 | 2 | 0.27 |
| Sample No. | Mix proportion/(kg·m-3) | Mass fraction/% | Volume fraction/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| OPC | SAC | SF | SSMP | MRS | Water | PCE | LC | NC | Bx | Steel fiber | |
| T1-10 | 72 | 648 | 380 | 140 | 760 | 225 | 12.5 | 0.075 | 2 | 0.09 | 0 |
| T2-10 | 72 | 648 | 380 | 140 | 760 | 225 | 12.5 | 0.100 | 2 | 0.18 | 1 |
| T3-10 | 72 | 648 | 380 | 140 | 760 | 225 | 12.5 | 0.125 | 2 | 0.27 | 2 |
| T4-20 | 144 | 576 | 380 | 140 | 760 | 225 | 12.5 | 0.075 | 2 | 0.27 | 1 |
| T5-20 | 144 | 576 | 380 | 140 | 760 | 225 | 12.5 | 0.100 | 2 | 0.09 | 2 |
| T6-20 | 144 | 576 | 380 | 140 | 760 | 225 | 12.5 | 0.125 | 2 | 0.18 | 0 |
| T7-30 | 216 | 504 | 380 | 140 | 760 | 225 | 12.5 | 0.075 | 2 | 0.18 | 2 |
| T8-30 | 216 | 504 | 380 | 140 | 760 | 225 | 12.5 | 0.100 | 2 | 0.27 | 0 |
| T9-30 | 216 | 504 | 380 | 140 | 760 | 225 | 12.5 | 0.125 | 2 | 0.09 | 1 |
| T0 | 0 | 720 | 380 | 140 | 760 | 225 | 12.5 | 0.100 | 2 | 0 | 1 |
表3 超早强UHPC配合比
Table 3 Mix proportion of ultra-early strength UHPC
| Sample No. | Mix proportion/(kg·m-3) | Mass fraction/% | Volume fraction/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| OPC | SAC | SF | SSMP | MRS | Water | PCE | LC | NC | Bx | Steel fiber | |
| T1-10 | 72 | 648 | 380 | 140 | 760 | 225 | 12.5 | 0.075 | 2 | 0.09 | 0 |
| T2-10 | 72 | 648 | 380 | 140 | 760 | 225 | 12.5 | 0.100 | 2 | 0.18 | 1 |
| T3-10 | 72 | 648 | 380 | 140 | 760 | 225 | 12.5 | 0.125 | 2 | 0.27 | 2 |
| T4-20 | 144 | 576 | 380 | 140 | 760 | 225 | 12.5 | 0.075 | 2 | 0.27 | 1 |
| T5-20 | 144 | 576 | 380 | 140 | 760 | 225 | 12.5 | 0.100 | 2 | 0.09 | 2 |
| T6-20 | 144 | 576 | 380 | 140 | 760 | 225 | 12.5 | 0.125 | 2 | 0.18 | 0 |
| T7-30 | 216 | 504 | 380 | 140 | 760 | 225 | 12.5 | 0.075 | 2 | 0.18 | 2 |
| T8-30 | 216 | 504 | 380 | 140 | 760 | 225 | 12.5 | 0.100 | 2 | 0.27 | 0 |
| T9-30 | 216 | 504 | 380 | 140 | 760 | 225 | 12.5 | 0.125 | 2 | 0.09 | 1 |
| T0 | 0 | 720 | 380 | 140 | 760 | 225 | 12.5 | 0.100 | 2 | 0 | 1 |
| Sample No. | Compressive strength/MPa | Flexural strength/MPa | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 3 h | 6 h | 1 d | 3 d | 28 d | 3 h | 6 h | 1 d | 3 d | 28 d | |
| T1-10 | 37.5 | 46.4 | 55.4 | 70.1 | 113.6 | 8.4 | 8.7 | 9.4 | 9.5 | 20.2 |
| T2-10 | 40.2 | 48.8 | 56.3 | 75.4 | 112.5 | 7.3 | 8.1 | 9.0 | 12.5 | 22.6 |
| T3-10 | 42.1 | 53.3 | 63.2 | 78.3 | 123.3 | 13.4 | 13.6 | 14.0 | 17.8 | 23.7 |
| T4-20 | 35.3 | 47.4 | 53.2 | 67.2 | 111.8 | 8.1 | 8.4 | 11.5 | 12.1 | 18.1 |
| T5-20 | 37.1 | 46.8 | 61.2 | 73.5 | 119.1 | 8.2 | 10.2 | 15.3 | 15.3 | 22.9 |
| T6-20 | 37.7 | 38.4 | 53.1 | 70.5 | 115.5 | 8.1 | 8.8 | 9.1 | 10.1 | 20.5 |
| T7-30 | 23.4 | 37.3 | 46.7 | 60.0 | 106.4 | 9.3 | 11.9 | 12.5 | 13.0 | 23.6 |
| T8-30 | 35.2 | 35.7 | 45.3 | 56.1 | 94.0 | 6.3 | 7.3 | 9.0 | 8.8 | 16.5 |
| T9-30 | 35.2 | 37.7 | 45.3 | 65.9 | 101.3 | 6.1 | 7.5 | 9.1 | 9.7 | 16.8 |
| Average | 36.0 | 43.5 | 53.3 | 68.6 | 110.8 | 8.4 | 9.4 | 11.0 | 12.1 | 20.5 |
| T0 | 35.0 | 44.4 | 55.0 | 80.5 | 130.5 | 6.4 | 8.5 | 9.8 | 10.0 | 22.7 |
表4 试验组力学性能
Table 4 Mechanical properties of test group
| Sample No. | Compressive strength/MPa | Flexural strength/MPa | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 3 h | 6 h | 1 d | 3 d | 28 d | 3 h | 6 h | 1 d | 3 d | 28 d | |
| T1-10 | 37.5 | 46.4 | 55.4 | 70.1 | 113.6 | 8.4 | 8.7 | 9.4 | 9.5 | 20.2 |
| T2-10 | 40.2 | 48.8 | 56.3 | 75.4 | 112.5 | 7.3 | 8.1 | 9.0 | 12.5 | 22.6 |
| T3-10 | 42.1 | 53.3 | 63.2 | 78.3 | 123.3 | 13.4 | 13.6 | 14.0 | 17.8 | 23.7 |
| T4-20 | 35.3 | 47.4 | 53.2 | 67.2 | 111.8 | 8.1 | 8.4 | 11.5 | 12.1 | 18.1 |
| T5-20 | 37.1 | 46.8 | 61.2 | 73.5 | 119.1 | 8.2 | 10.2 | 15.3 | 15.3 | 22.9 |
| T6-20 | 37.7 | 38.4 | 53.1 | 70.5 | 115.5 | 8.1 | 8.8 | 9.1 | 10.1 | 20.5 |
| T7-30 | 23.4 | 37.3 | 46.7 | 60.0 | 106.4 | 9.3 | 11.9 | 12.5 | 13.0 | 23.6 |
| T8-30 | 35.2 | 35.7 | 45.3 | 56.1 | 94.0 | 6.3 | 7.3 | 9.0 | 8.8 | 16.5 |
| T9-30 | 35.2 | 37.7 | 45.3 | 65.9 | 101.3 | 6.1 | 7.5 | 9.1 | 9.7 | 16.8 |
| Average | 36.0 | 43.5 | 53.3 | 68.6 | 110.8 | 8.4 | 9.4 | 11.0 | 12.1 | 20.5 |
| T0 | 35.0 | 44.4 | 55.0 | 80.5 | 130.5 | 6.4 | 8.5 | 9.8 | 10.0 | 22.7 |
| Range | Factor | |||
|---|---|---|---|---|
A OPC replacement rate | B LC content | C Steel fiber content | D Bx content | |
| k1 | 39.93 | 32.07 | 36.80 | 36.60 |
| k2 | 36.70 | 37.50 | 36.90 | 33.77 |
| k3 | 31.27 | 38.33 | 34.20 | 37.53 |
| R | 8.66 | 6.26 | 2.70 | 3.76 |
| Primary and secondary factors | A>B>D>C | |||
| Optimal plan | A1B3C2D3 | |||
表5 试验组3 h抗压强度试验结果极差分析
Table 5 Range analysis of 3 h compressive strength test results of test group
| Range | Factor | |||
|---|---|---|---|---|
A OPC replacement rate | B LC content | C Steel fiber content | D Bx content | |
| k1 | 39.93 | 32.07 | 36.80 | 36.60 |
| k2 | 36.70 | 37.50 | 36.90 | 33.77 |
| k3 | 31.27 | 38.33 | 34.20 | 37.53 |
| R | 8.66 | 6.26 | 2.70 | 3.76 |
| Primary and secondary factors | A>B>D>C | |||
| Optimal plan | A1B3C2D3 | |||
| Range | Factor | |||
|---|---|---|---|---|
A OPC replacement rate | B LC content | C Steel fiber content | D Bx content | |
| k1 | 9.70 | 8.60 | 7.60 | 7.57 |
| k2 | 8.13 | 7.27 | 7.17 | 8.23 |
| k3 | 7.23 | 9.20 | 10.30 | 9.27 |
| R | 2.47 | 1.93 | 3.13 | 1.70 |
| Primary and secondary factors | C>A>B>D | |||
| Optimal plan | A1B3C3D3 | |||
表6 试验组3 h抗折强度试验结果极差分析
Table 6 Range analysis of 3 h flexural strength test results of test group
| Range | Factor | |||
|---|---|---|---|---|
A OPC replacement rate | B LC content | C Steel fiber content | D Bx content | |
| k1 | 9.70 | 8.60 | 7.60 | 7.57 |
| k2 | 8.13 | 7.27 | 7.17 | 8.23 |
| k3 | 7.23 | 9.20 | 10.30 | 9.27 |
| R | 2.47 | 1.93 | 3.13 | 1.70 |
| Primary and secondary factors | C>A>B>D | |||
| Optimal plan | A1B3C3D3 | |||
| Sample No. | Mix proportion/( kg·m-3) | Mass fraction/% | Volume fraction/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| OPC | SAC | SF | SSMP | MRS | Water | PCE | LC | NC | Bx | Steel fiber | |
| K0-10 | 72 | 648 | 380 | 140 | 760 | 225 | 12.5 | 0.125 | 2 | 0.27 | 1 |
表7 最佳抗压性能UHPC配合比
Table 7 Mix proportion of optimum compressive properties UHPC
| Sample No. | Mix proportion/( kg·m-3) | Mass fraction/% | Volume fraction/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| OPC | SAC | SF | SSMP | MRS | Water | PCE | LC | NC | Bx | Steel fiber | |
| K0-10 | 72 | 648 | 380 | 140 | 760 | 225 | 12.5 | 0.125 | 2 | 0.27 | 1 |
| Sample No. | Compressive strength/MPa | Flexural strength/MPa | Initial setting time /min | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 h | 6 h | 1 d | 3 d | 28 d | 3 h | 6 h | 1 d | 3 d | 28 d | ||
| K0-10 | 39.6 | 47.5 | 62.7 | 79.5 | 126.5 | 11.2 | 13.5 | 14.6 | 16.4 | 22.1 | 30 |
表8 最佳抗压性能UHPC力学性能及初凝时间
Table 8 Optimum compressive properties UHPC mechanical properties and initial setting time
| Sample No. | Compressive strength/MPa | Flexural strength/MPa | Initial setting time /min | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 h | 6 h | 1 d | 3 d | 28 d | 3 h | 6 h | 1 d | 3 d | 28 d | ||
| K0-10 | 39.6 | 47.5 | 62.7 | 79.5 | 126.5 | 11.2 | 13.5 | 14.6 | 16.4 | 22.1 | 30 |
| [1] | 交通运输部. 公路工程水泥混凝土用快速修补材料 第1部分:水泥基修补材料: JT/T 1211.1—2018[S]. 北京: 人民交通出版社, 2018. |
| Ministry of Transport of the People’s Republic of China. Rapid repairing material of cement concrete for highway engineering- Part 1: cementitious repairing materia: JT/T 1211.1—2018[S]. Beijing: China Communications Press, 2018 (in Chinese). | |
| [2] |
YU R, ZHANG X Y, HU Y W, et al. Development of a rapid hardening ultra-high performance concrete (R-UHPC): from macro properties to micro structure[J]. Construction and Building Materials, 2022, 329: 127188.
DOI URL |
| [3] | 周 渊, 王 雄, 秦 廉, 等. 快硬UHPC的研发及其在道路快速维养工程中的示范应用[J]. 新型建筑材料, 2021, 48(1): 10-14. |
| ZHOU Y, WANG X, QIN L, et al. Development of rapid hardening UHPC and its application in road rehabilitation[J]. New Building Materials, 2021, 48(1): 10-14 (in Chinese). | |
| [4] | 丁 斌, 欧阳利军, 房钰柯. 混凝土早强性能研究进展和展望[J]. 混凝土与水泥制品, 2020(9): 24-29. |
| DING B, OUYANG L J, FANG Y K. Review and prospect of early strength performance of concrete[J]. China Concrete and Cement Products, 2020(9): 24-29 (in Chinese). | |
| [5] | 于 峰, 张 扬, 王旭良, 等. 全集料钢渣混凝土抗压强度试验研究[J]. 应用基础与工程科学学报, 2018, 26(4): 854-862. |
| YU F, ZHANG Y, WANG X L, et al. Experimental study on compressive strength of full steel slag aggregate concrete[J]. Journal of Basic Science and Engineering, 2018, 26(4): 854-862 (in Chinese). | |
| [6] | 唐咸远, 胡贤松, 罗 杰, 等. 改性材料及其掺量对超高性能混凝土力学性能的影响[J]. 中国粉体技术, 2024, 30(1): 153-160. |
| TANG X Y, HU X S, LUO J, et al. Effects of modified materials and its contents on mechanical property of ultra-high performance concrete[J]. China Powder Science and Technology, 2024, 30(1): 153-160 (in Chinese). | |
| [7] |
TANG X Y, FENG C Z, REN B W, et al. Experimental study on the triaxial compressive properties of UHPC with coarse aggregate steel slag micro powder under different confining pressures[J]. Scientific Reports, 2025, 15(1): 12343.
DOI |
| [8] |
TANG X Y, HE B B, YANG B, et al. Experimental study on axial stress-strain behaviour of steel fibre-reinforced steel slag micropowder UHPC[J]. Applied Sciences, 2023, 13(15): 8807.
DOI URL |
| [9] | 龚建清, 郭万里, 龚 啸, 等. 碳酸锂与纳米碳酸钙对UHPC早期力学性能的影响[J]. 硅酸盐通报, 2020, 39(11): 3463-3472. |
| GONG J Q, GUO W L, GONG X, et al. Effects of lithium carbonate and nano-calcium carbonate on early mechanical properties of UHPC[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3463-3472 (in Chinese). | |
| [10] | 郭金波, 郭妍妍, 丁向群, 等. 无机盐-络合剂-聚合物复合早强剂对水泥早期水化性能的影响[J]. 混凝土, 2024(6): 143-145. |
| GUO J B, GUO Y Y, DING X Q, et al. Effect of inorganic salt-complex agent-polmer on early hydration properties of cement[J]. Concrete, 2024(6): 143-145 (in Chinese). | |
| [11] |
WU X H, HU L E, GUO F C, et al. Analysis of different early strength agents on the performance of prefabricated UHPC[J]. Materials, 2024, 17(11): 2481.
DOI URL |
| [12] |
WEI K F, XU G, YANG J, et al. Study on mechanical and shrinkage properties of ES-UHPC[J]. Construction and Building Materials, 2023, 377: 131137.
DOI URL |
| [13] | 邹永泉, 仝亚刚, 李 征. 高掺量SBR的粒径对硫铝酸盐水泥-石膏砂浆性能的影响[J]. 混凝土, 2024(11): 145-149+154. |
| ZOU Y Q, TONG Y G, LI Z. Effect of particle size of high content SBR on the properties of sulfoaluminate cement-gypsum mortar[J]. Concrete, 2024(11): 145-149+154 (in Chinese). | |
| [14] | 魏定邦, 丁 民, 任国斌, 等. 硫铝酸盐复合水泥体系水化特征研究[J]. 材料导报, 2018, 32(增刊2): 492-497. |
| WEI D B, DING M, REN G B, et al. Study on hydration properties of composite cementitious material based on sulphoaluminate[J]. Materials Reports, 2018, 32(supplement 2): 492-497 (in Chinese). | |
| [15] | 杨 清, 张秀芝, 刘 迪, 等. 普通硅酸盐-硫铝酸盐复合胶凝体系水化性能和机理研究[J]. 材料导报, 2018, 32(增刊2): 517-521+534. |
| YANG Q, ZHANG X Z, LIU D, et al. Hydration properties and mechanism of Portland cement-sulphoaluminate cement compound system[J]. Materials Reports, 2018, 32(supplement 2): 517-521+534 (in Chinese). | |
| [16] | 李传习, 夏雨航, 王圣杰, 等. 初凝超30 min超早强UHPC制备及其机理[J]. 硅酸盐通报, 2023, 42(5): 1630-1639. |
| LI C X, XIA Y H, WANG S J, et al. Preparation and mechanism of super-early-strength UHPC with initial setting time over 30 min[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1630-1639 (in Chinese). | |
| [17] | 杨 云. 外掺硫铝酸盐水泥对混凝土早期强度影响研究[D]. 重庆: 重庆大学, 2019. |
| YANG Y. Effect of the additive with sulphoaluminate cement on early strength of concrete[D]. Chongqing: Chongqing University, 2019 (in Chinese). | |
| [18] | 国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. |
| State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Test method of cement mortar strength(ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021 (in Chinese). | |
| [19] | 国家市场监督管理总局, 国家标准化管理委员会. 水泥标准稠度用水量、凝结时间与安定性检验方法: GB/T 1346—2024[S]. 北京: 中国标准出版社, 2024. |
| State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Test methods for water requirement of standard consistency, setting time and soundness of the Portland cement: GB/T 1346—2024[S]. Beijing: Standards Press of China, 2024 (in Chinese). | |
| [20] | 姚兆龙, 马 超, 谢孟奇, 等. 钢渣微粉-硅灰水泥基胶凝材料的水化机理研究[J]. 金属矿山, 2025(3): 278-285. |
| YAO Z L, MA C, XIE M Q, et al. Study on hydration mechanism of steel slag powder-silica fume cement-based cementitious materials[J]. Metal Mine, 2025(3): 278-285 (in Chinese). |
| [1] | 安仰壮, 俞海, 刘昌庚. 基于数字图像相关的玄武岩纤维泡沫混凝土压缩损伤研究[J]. 硅酸盐通报, 2026, 45(1): 92-102. |
| [2] | 刘仕琪, 周紫晨, 黄修林, 曾明, 张冰, 张剑峰, 沈春华. 燃煤渣对水泥力学和水化过程的影响[J]. 硅酸盐通报, 2026, 45(1): 165-176. |
| [3] | 黄振辉, 赵菲, 常钧, 李文政, 周智. CO2养护椰壳炭再生混凝土的力学性能和固碳能力[J]. 硅酸盐通报, 2026, 45(1): 156-164. |
| [4] | 王文胜, 吕海龙, 马江涛, 刘琦, 聂晓东. 珊瑚混凝土基础力学性能及工程应用研究现状[J]. 硅酸盐通报, 2026, 45(1): 1-20. |
| [5] | 何兆益, 邹萌, 姚启文, 曹东伟, 秦猛. 高掺量磷石膏-水泥-固化剂稳定碎石基层材料的性能及强度形成机理[J]. 硅酸盐通报, 2026, 45(1): 346-358. |
| [6] | 梁新星, 张敬申, 王朝胜, 梁李归祖, 刘泽, 张通, 朱颖灿. 预养护对硅钙渣复合蒸压加气混凝土宏观性能与微观结构的影响[J]. 硅酸盐通报, 2026, 45(1): 40-46. |
| [7] | 姜德民, 胡思雨, 康红龙, 李御锦, 候宇翔. 改性处理对3D打印稻草纤维水泥基复合材料性能的影响[J]. 硅酸盐通报, 2026, 45(1): 47-57. |
| [8] | 张争奇, 刘祉鑫, 芮照诚, 石杰荣, 杨新红. 地聚物稳定建筑固废再生集料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3347-3354. |
| [9] | 王倩倩, 戴航, 王立川, 张春瑜, 李利平, 王海彦, 张京京. 高氯盐加速侵蚀下水泥-水玻璃双液浆结石体耐久性研究[J]. 硅酸盐通报, 2025, 44(9): 3137-3146. |
| [10] | 义启贵, 湛缕金, 刘祥, 许瑞天, 梁莹, 陈宗平. 碳酸氢钠溶液碳化:一种提高再生骨料混凝土性能的新方法[J]. 硅酸盐通报, 2025, 44(9): 3227-3237. |
| [11] | 朱子龙, 陈培冲, 廖洁, 杨旋, 赵德强, 曲良辰, 王桂明, 沈卫国. 砂砾岩机制砂粒形对混凝土性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3168-3177. |
| [12] | 刘佳钰, 高誉, 刘泽, 温帅云, 王栋民, 危鹏, 张春辉, 朱正江, 李清亚. 水泥固化飞灰-水泥复合胶凝材料的性能与微观结构研究[J]. 硅酸盐通报, 2025, 44(9): 3272-3279. |
| [13] | 张小龙, 王伟, 姚爱军, 王朝晖, 冯希浩, 王杰. 低温低压养护条件下复合胶凝材料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3295-3304. |
| [14] | 余洁歆, 朱艺婷, 庄旭, 陈玉霜, 张广达, 许莉. 以尾矿砂为骨料的绿色工程水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2025, 44(9): 3337-3346. |
| [15] | 黄友奇, 史刘彤, 高玉波, 周林. 蓝宝石单晶的动态力学性能及本构关系研究[J]. 硅酸盐通报, 2025, 44(9): 3391-3401. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||