硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 202-211.DOI: 10.16552/j.cnki.issn1001-1625.2025.0738
收稿日期:2025-07-25
修订日期:2025-09-09
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
李 睿,博士,教授。E-mail:liruiking@kust.edu.cn
作者简介:蔡 银(1998—),男,硕士研究生。主要从事桥梁设计与加固、道路材料开发与应用的研究。E-mail:20232210047@stu.kust.edu.cn
基金资助:
CAI Yin1,2(
), LI Rui1(
), BAO Tianpeng1,2
Received:2025-07-25
Revised:2025-09-09
Published:2026-01-20
Online:2026-02-10
摘要:
为了推进磷渣的高值化利用,改善公路基层的力学性能与路用性能,本文以细粒式磷渣替代部分碎石集料制备公路基层混合料,全面分析了混合料的无侧限抗压强度、抗压回弹模量、水稳定性及抗裂性能的影响因素。结果表明,水泥剂量、磷渣掺量、养护龄期对混合料的无侧限抗压强度与抗压回弹模量具有显著影响,混合料的无侧限抗压强度、抗压回弹模量均随磷渣掺量的提高而有所减小。混合料的水稳定性随着磷渣掺量的提高先增加后降低,当磷渣掺量为25%(质量分数)时,混合料的水稳系数达到93%。与未掺磷渣的对照组相比,随着磷渣掺量的提高,试件早期干缩应变与干缩系数较大,但后期干缩应变与干缩系数较小,混合料的抗裂性能有所改善。对磷渣在云南省某二级公路进行了公路基层材料的工程应用,公路的检测合格率为100%,验证了磷渣在公路基层材料中应用的可行性。
中图分类号:
蔡银, 李睿, 包天鹏. 细粒式磷渣在公路基层中的应用研究[J]. 硅酸盐通报, 2026, 45(1): 202-211.
CAI Yin, LI Rui, BAO Tianpeng. Application of Fine-Grained Phosphorus Slag in Highway Base[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 202-211.
| Composition | MgO | P2O5 | SO3 | F- | ||||
|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 45.14 | 42.38 | 3.75 | 1.73 | 2.54 | 1.78 | 1.52 | 0.94 |
表1 磷渣的主要化学组成
Table 1 Main chemical composition of phosphorus slag
| Composition | MgO | P2O5 | SO3 | F- | ||||
|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 45.14 | 42.38 | 3.75 | 1.73 | 2.54 | 1.78 | 1.52 | 0.94 |
| Inspection item | Grain size/mm | Apparent density/(g·cm-3) | Water content/% | Crushing value/% | Needle leaf content/% |
|---|---|---|---|---|---|
| Test results | 4.75~<9.50 | 2.76 | 0.8 | — | 8.9 |
| 9.50~26.50 | 2.68 | 0.7 | 17 | 8.9 |
表2 粗集料性能检测结果
Table 2 Property test results of coarse aggregate
| Inspection item | Grain size/mm | Apparent density/(g·cm-3) | Water content/% | Crushing value/% | Needle leaf content/% |
|---|---|---|---|---|---|
| Test results | 4.75~<9.50 | 2.76 | 0.8 | — | 8.9 |
| 9.50~26.50 | 2.68 | 0.7 | 17 | 8.9 |
| Inspection item | Grain size/mm | Plasticity index/% | Apparent density/(g·cm-3) | Water content/% | Sand equivalent/% |
|---|---|---|---|---|---|
| Test results | 0~2.36 | 13 | 2.83 | 1.0 | 73 |
表3 细集料性能检测结果
Table 3 Property test results of fine aggregate
| Inspection item | Grain size/mm | Plasticity index/% | Apparent density/(g·cm-3) | Water content/% | Sand equivalent/% |
|---|---|---|---|---|---|
| Test results | 0~2.36 | 13 | 2.83 | 1.0 | 73 |
| Inspection item | Setting time | Compressive strength/MPa | Flexural strength/MPa | |||
|---|---|---|---|---|---|---|
| Initial setting/min | Final setting/min | 3 d | 28 d | 3 d | 28 d | |
| Test results | 236 | 359 | 19.2 | 48.1 | 4.9 | 8.2 |
表4 水泥性能检测结果
Table 4 Property test results of cement
| Inspection item | Setting time | Compressive strength/MPa | Flexural strength/MPa | |||
|---|---|---|---|---|---|---|
| Initial setting/min | Final setting/min | 3 d | 28 d | 3 d | 28 d | |
| Test results | 236 | 359 | 19.2 | 48.1 | 4.9 | 8.2 |
Proportion of phosphorus slag replace gravel (mass fraction)/% | Cumulative passing rate of different standard sieves(mass fraction)/% | ||||||
|---|---|---|---|---|---|---|---|
| 31.5 mm | 19.0 mm | 9.50 mm | 4.75 mm | 2.36 mm | 0.60 mm | 0.075 mm | |
| 0 | 100.0 | 83.3 | 50.1 | 29.4 | 25.9 | 12.3 | 3.5 |
| 25 | 100.0 | 80.4 | 50.6 | 40.8 | 30.8 | 11.4 | 2.7 |
| 50 | 100.0 | 82.0 | 56.7 | 49.8 | 32.1 | 8.6 | 2.0 |
| 75 | 100.0 | 100.0 | 97.1 | 88.8 | 62.1 | 20.0 | 4.2 |
| 100 | 100.0 | 100.0 | 96.1 | 85.1 | 49.7 | 10.3 | 0.9 |
表5 混合料的合成级配(密实型级配)
Table 5 Composite gradation of mixture (dense gradation)
Proportion of phosphorus slag replace gravel (mass fraction)/% | Cumulative passing rate of different standard sieves(mass fraction)/% | ||||||
|---|---|---|---|---|---|---|---|
| 31.5 mm | 19.0 mm | 9.50 mm | 4.75 mm | 2.36 mm | 0.60 mm | 0.075 mm | |
| 0 | 100.0 | 83.3 | 50.1 | 29.4 | 25.9 | 12.3 | 3.5 |
| 25 | 100.0 | 80.4 | 50.6 | 40.8 | 30.8 | 11.4 | 2.7 |
| 50 | 100.0 | 82.0 | 56.7 | 49.8 | 32.1 | 8.6 | 2.0 |
| 75 | 100.0 | 100.0 | 97.1 | 88.8 | 62.1 | 20.0 | 4.2 |
| 100 | 100.0 | 100.0 | 96.1 | 85.1 | 49.7 | 10.3 | 0.9 |
| Sample No. | Mass fraction/% | Rd/MPa | CV/% | R/MPa | ||||
|---|---|---|---|---|---|---|---|---|
| Cement | Phosphorus slag | 2# | 3# | 4# | ||||
| A1 | 3.5 | 0 | 40 | 35 | 25 | 5.25 | 6.3 | 5.71 |
| A2 | 3.5 | 25 | 47 | 10 | 18 | 4.08 | 7.6 | 4.52 |
| A3 | 3.5 | 50 | 43 | 0 | 7 | 3.75 | 7.5 | 4.15 |
| A4 | 3.5 | 75 | 0 | 0 | 25 | 2.03 | 4.8 | 2.16 |
| A5 | 3.5 | 100 | 0 | 0 | 0 | 1.52 | 5.2 | 1.63 |
| B1 | 4.5 | 0 | 40 | 35 | 25 | 6.35 | 3.5 | 6.65 |
| B2 | 4.5 | 25 | 47 | 10 | 18 | 4.99 | 4.8 | 5.32 |
| B3 | 4.5 | 50 | 43 | 0 | 7 | 4.82 | 2.4 | 4.97 |
| B4 | 4.5 | 75 | 0 | 0 | 25 | 2.57 | 3.1 | 2.68 |
| B5 | 4.5 | 100 | 0 | 0 | 0 | 1.64 | 5.5 | 1.76 |
| C1 | 5.5 | 0 | 40 | 35 | 25 | 6.81 | 5.6 | 7.34 |
| C2 | 5.5 | 25 | 47 | 10 | 18 | 5.90 | 6.9 | 6.47 |
| C3 | 5.5 | 50 | 43 | 0 | 7 | 4.76 | 8.5 | 5.34 |
| C4 | 5.5 | 75 | 0 | 0 | 25 | 2.92 | 4.3 | 3.09 |
| C5 | 5.5 | 100 | 0 | 0 | 0 | 1.90 | 6.7 | 2.08 |
表6 试验配合比及7 d无侧限抗压强度测试结果
Table 6 Mix proportion and test results of 7 d unconfined compressive strength
| Sample No. | Mass fraction/% | Rd/MPa | CV/% | R/MPa | ||||
|---|---|---|---|---|---|---|---|---|
| Cement | Phosphorus slag | 2# | 3# | 4# | ||||
| A1 | 3.5 | 0 | 40 | 35 | 25 | 5.25 | 6.3 | 5.71 |
| A2 | 3.5 | 25 | 47 | 10 | 18 | 4.08 | 7.6 | 4.52 |
| A3 | 3.5 | 50 | 43 | 0 | 7 | 3.75 | 7.5 | 4.15 |
| A4 | 3.5 | 75 | 0 | 0 | 25 | 2.03 | 4.8 | 2.16 |
| A5 | 3.5 | 100 | 0 | 0 | 0 | 1.52 | 5.2 | 1.63 |
| B1 | 4.5 | 0 | 40 | 35 | 25 | 6.35 | 3.5 | 6.65 |
| B2 | 4.5 | 25 | 47 | 10 | 18 | 4.99 | 4.8 | 5.32 |
| B3 | 4.5 | 50 | 43 | 0 | 7 | 4.82 | 2.4 | 4.97 |
| B4 | 4.5 | 75 | 0 | 0 | 25 | 2.57 | 3.1 | 2.68 |
| B5 | 4.5 | 100 | 0 | 0 | 0 | 1.64 | 5.5 | 1.76 |
| C1 | 5.5 | 0 | 40 | 35 | 25 | 6.81 | 5.6 | 7.34 |
| C2 | 5.5 | 25 | 47 | 10 | 18 | 5.90 | 6.9 | 6.47 |
| C3 | 5.5 | 50 | 43 | 0 | 7 | 4.76 | 8.5 | 5.34 |
| C4 | 5.5 | 75 | 0 | 0 | 25 | 2.92 | 4.3 | 3.09 |
| C5 | 5.5 | 100 | 0 | 0 | 0 | 1.90 | 6.7 | 2.08 |
图5 5.5%水泥剂量与不同磷渣掺量下试件的无侧限抗压强度 无侧限抗压强度
Fig.5 Unconfined compressive strength of specimens with 5.5% cement dosage and different phosphorus slag dosages 4.5% cement dosage and different phosphorus slag dosages
| Rd/MPa | CV/% | R/MPa | Compactness/% |
|---|---|---|---|
| 4.93 | 4.8 | 5.24 | 98 |
表7 留样的力学性能测试结果
Table 7 Mechanical properties test results of retained specimens
| Rd/MPa | CV/% | R/MPa | Compactness/% |
|---|---|---|---|
| 4.93 | 4.8 | 5.24 | 98 |
| Inspection item | Check point | Qualified point | Passing rate/% |
|---|---|---|---|
| Compactness | 12 | 12 | 100 |
| Thickness | 10 | 10 | 100 |
| Planeness | 8 | 8 | 100 |
| Profile elevation | 13 | 13 | 100 |
表8 混合料的验收检测结果
Table 8 Acceptance test results of mixture
| Inspection item | Check point | Qualified point | Passing rate/% |
|---|---|---|---|
| Compactness | 12 | 12 | 100 |
| Thickness | 10 | 10 | 100 |
| Planeness | 8 | 8 | 100 |
| Profile elevation | 13 | 13 | 100 |
| [1] | 唐国旺, 李建华, 邓 强, 等. 超细磷渣粉对混凝土性能的影响及内在机理[J]. 建筑材料学报, 2025, 28(8): 767-773. |
| TANG G W, LI J H, DENG Q, et al. Effect of ultrafine phosphorus slag on concrete performance and its internal mechanism[J]. Journal of Building Materials, 2025, 28(8): 767-773 (in Chinese). | |
| [2] | 张 敏, 马倩敏, 郭荣鑫, 等. 磷渣-水泥复合及碱磷渣胶凝材料力学性能实验研究[J]. 硅酸盐通报, 2020, 39(2): 376-382+401. |
| ZHANG M, MA Q M, GUO R X, et al. Mechanical properties of phosphorus slag-Portland cement composite and alkali phosphorus slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 376-382+401 (in Chinese). | |
| [3] |
JI G H, GAO X, SOHN I, et al. Review of beneficiation techniques and new thinking for comprehensive utilization of high-phosphorus iron ores[J]. Minerals Engineering, 2025, 223: 109176.
DOI URL |
| [4] | 颜碧兰, 王 昕. 磷渣在水泥和混凝土中的应用与标准研究进展[J]. 中国水泥, 2011(1): 49-53. |
| YAN B L, WANG X. Application and standard research progress of phosphorus slag in cement and concrete[J]. China Cement, 2011(1): 49-53 (in Chinese). | |
| [5] |
ZHANG Y N, WU Q, YANG D K, et al. Study on the properties of alkali-activated phosphorus slag mortar mixed with granulated blast furnace slag/fly ash[J]. Journal of the Australian Ceramic Society, 2024, 60(4): 1281-1291.
DOI |
| [6] |
ALVAREZ J L, GEDDES R, RICE J E, et al. Elemental phosphorus slag exposure study in southeastern Idaho, USA[J]. International Congress Series, 2002, 1225: 131-138.
DOI URL |
| [7] | 姜关照, 吴爱祥, 王贻明. 碱激发水泥-磷渣固化性能及与含硫尾砂的相容性[J]. 工程科学学报, 2020, 42(8): 963-971. |
| JIANG G Z, WU A X, WANG Y M. Curing performance of alkali-activated cement-phosphorous slag and its compatibility with sulfur tailings[J]. Chinese Journal of Engineering, 2020, 42(8): 963-971 (in Chinese). | |
| [8] | 吴昕谕. 磷渣及磷石膏用于水泥生产的技术方案[J]. 建材发展导向, 2023, 21(16): 18-20. |
| WU X Y. Technical scheme of phosphorus slag and phosphogypsum used in cement production[J]. Development Guide to Building Materials, 2023, 21(16): 18-20 (in Chinese). | |
| [9] | 姚之琦, 孙志立, 问立宁. 我国黄磷及精细磷酸盐生产的困境和发展机遇[J]. 磷肥与复肥, 2019, 34(11): 1-3. |
| YAO Z Q, SUN Z L, WEN L N. Difficulties and opportunities of yellow phosphorus and fine phosphate production in China[J]. Phosphate & Compound Fertilizer, 2019, 34(11): 1-3 (in Chinese). | |
| [10] | 张 冰, 杨 林, 杨 松, 等. 磷渣砂特性及其对砂浆性能的影响[J]. 贵州大学学报(自然科学版), 2014, 31(2): 108-111. |
| ZHANG B, YANG L, YANG S, et al. Properties of phosphorus slag sand and their influence on the performance of mortar[J]. Journal of Guizhou University (Natural Sciences), 2014, 31(2): 108-111 (in Chinese). | |
| [11] | 查 进, 周明凯, 沈卫国. 水泥稳定磷渣碎石基层材料的研究[J]. 公路, 2004, 49(12): 186-189. |
| ZHA J, ZHOU M K, SHEN W G. A study on basecourse of cement stabilizing phosphorous slag and gravel[J]. Highway, 2004, 49(12): 186-189 (in Chinese). | |
| [12] | 周明凯, 查进, 沈卫国. 磷渣路面基层材料的设计、制备与性能研究(英文)[J]. 中山大学学报(自然科学版), 2007, 46(增刊1): 159-160. |
| ZHOU M K, ZHA J, SHEN W G. Design, preparation and property of phosphorous slag road base materials[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(supplement 1): 159-160. | |
| [13] | 陈 青, 张 覃, 李先海, 等. 贵州某磷渣矿物学特征及作水泥掺合料可行性研究[J]. 矿冶工程, 2019, 39(3): 89-92+98. |
|
CHEN Q, ZHANG Q, LI X H, et al. Research on mineralogical characteristics and feasibility of phosphorus slag from Guizhou as a cement additive[J]. Mining and Metallurgical Engineering, 2019, 39(3): 89-92+98 (in Chinese).
DOI |
|
| [14] |
LV X D, YANG L, WANG F Z, et al. Hydration, microstructure characteristics, and mechanical properties of high-ferrite Portland cement in the presence of fly ash and phosphorus slag[J]. Cement and Concrete Composites, 2023, 136: 104862.
DOI URL |
| [15] |
SHAN Y C, ZHUANG S Y, YU X. Understanding the impact of ultrafine phosphorus slag on the workability of cement paste[J]. Powder Technology, 2025, 455: 120800.
DOI URL |
| [16] | PANG L, AN M Z. Value-added reuse of fine phosphorus slag powder in composite cementitious materials[J]. Journal of Materials in Civil Engineering, 2025, 37(6): 04025148. |
| [17] | JIN J L, DING J J, XIONG L, et al. On the preparation of low-temperature-rise and low-shrinkage concrete based on phosphorus slag[J]. Fluid Dynamics & Materials Processing, 2024, 20(4): 803-814. |
| [18] |
ALLAHVERDI A, PILEHVAR S, MAHINROOSTA M. Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement[J]. Powder Technology, 2016, 288: 132-139.
DOI URL |
| [19] | 姚宇飞, 唐永鹏, 石 鑫. 磷渣用作混凝土细骨料的可行性研究[J]. 混凝土世界, 2019(11): 62-65. |
| YAO Y F, TANG Y P, SHI X. Feasibility study on phosphorus slag used as fine aggregate in concrete[J]. China Concrete, 2019(11): 62-65 (in Chinese). | |
| [20] | 刘望生, 张英英, 郭友欢, 等. 三种工业废渣作为活性矿物掺合料的对比研究[J]. 混凝土, 2015(9): 139-141. |
| LIU W S, ZHANG Y Y, GUO Y H, et al. Three kinds of industrial waste residue as a comparative study of active mineral admixture[J]. Concrete, 2015(9): 139-141 (in Chinese). | |
| [21] | 钱国平, 蒋 博, 巨锁基. 水泥稳定磷渣碎石混合料早期强度试验[J]. 中外公路, 2016, 36(1): 254-257. |
| QIAN G P, JIANG B, JU S J. Early strength test of cement stabilized phosphorus slag macadam mixture[J]. Journal of China & Foreign Highway, 2016, 36(1): 254-257 (in Chinese). | |
| [22] | 李 强. 贵州公路水泥锰渣稳定碎石基层应用研究[D]. 重庆: 重庆交通大学, 2021. |
| LI Q. Research on application of cement manganese slag stabilized crushed stone base of guizhou highway[D]. Chongqing: Chongqing Jiaotong University, 2021 (in Chinese). | |
| [23] | 刘 超, 赵德强, 马 倩, 等. 水泥-磷石膏稳定碎石路面基层材料的研究与应用[J]. 硅酸盐通报, 2023, 42(6): 2121-2130. |
| LIU C, ZHAO D Q, MA Q, et al. Research and application of cement-phosphogypsum stabilized crushed stone pavement base material[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2121-2130 (in Chinese). | |
| [24] | 郑武西. 钢渣在水泥稳定碎石基层中的应用研究[D]. 西安: 长安大学, 2018. |
| ZHENG W X. Application of steel slag in cement stabilized crushed stone base[D]. Xi’an: Chang’an University, 2018 (in Chinese). |
| [1] | 王文胜, 吕海龙, 马江涛, 刘琦, 聂晓东. 珊瑚混凝土基础力学性能及工程应用研究现状[J]. 硅酸盐通报, 2026, 45(1): 1-20. |
| [2] | 周益凡, 张伟业, 陈安见, 冉金林, 王东星. 地聚合物注浆材料性能增强及工程应用研究综述[J]. 硅酸盐通报, 2025, 44(8): 2873-2890. |
| [3] | 温小韵, 童雄, 尚江涛, 车远, 陈柯臻, 谢贤, 范培强. 磷石膏基胶凝材料的力学性能及应用研究进展[J]. 硅酸盐通报, 2025, 44(3): 953-969. |
| [4] | 王春龙, 穆锐, 刘宁波, 王正刚. 再生混凝土的制备与力学性能研究进展[J]. 硅酸盐通报, 2025, 44(12): 4283-4300. |
| [5] | 杨靖娴, 马丽萍, 何宾宾, 吴彰钰, 佘伟. 磷石膏基固废碱激发胶凝材料研究进展[J]. 硅酸盐通报, 2025, 44(11): 3934-3946. |
| [6] | 李卫红, 郭文斌, 郭向兵, 陈潇, 周明凯. CFB灰渣混凝土的组成设计与应用研究[J]. 硅酸盐通报, 2024, 43(7): 2530-2538. |
| [7] | 杨林, 杨建宇, 杨伟军. 新型复合激发锂渣基固化剂加固软土试验研究[J]. 硅酸盐通报, 2024, 43(7): 2556-2564. |
| [8] | 王本仁, 张刘阳, 刘西峰, 段旭林, 陈潇. 水泥钢渣稳定土的路用性能研究与工程应用[J]. 硅酸盐通报, 2024, 43(4): 1472-1481. |
| [9] | 李超, 姜运良, 李绍勇, 颜峰, 汤长西, 李晓龙. 钢渣细集料对水泥稳定砂岩基层路用性能影响研究[J]. 硅酸盐通报, 2024, 43(3): 1172-1180. |
| [10] | 毛智添, 段翔, 郝泽慧, 邓弘扬, 唐威, 何园. 利用工业固废煅烧制备天然水硬性石灰的实验及应用研究[J]. 硅酸盐通报, 2024, 43(11): 4159-4166. |
| [11] | 韩洪宇, 李少秋, 魏武巍, 季节, 王君武, 李增宝, 郑文华. 改性橡胶粉水泥稳定碎石抗裂性能研究[J]. 硅酸盐通报, 2024, 43(11): 4254-4260. |
| [12] | 杨文秀, 赵青林, 周明凯, 吴德凡, 武苗苗, 沈卫国. 复合增稠剂对大流态薄层砂浆性能的影响及其抗裂机理[J]. 硅酸盐通报, 2023, 42(6): 1938-1949. |
| [13] | 刘超, 赵德强, 马倩, 陈贵, 黄娅, 沈卫国. 水泥-磷石膏稳定碎石路面基层材料的研究与应用[J]. 硅酸盐通报, 2023, 42(6): 2121-2130. |
| [14] | 朱振中, 刘元珍, 王文婧, 王鲜星, 段鹏飞. 玄武岩纤维陶粒混凝土抗裂性能与热工性能试验研究[J]. 硅酸盐通报, 2023, 42(3): 908-916. |
| [15] | 沈鑫, 郭随华, 李文伟, 陆超, 张坤悦, 王敏, 文寨军. 低热硅酸盐水泥水化及性能研究现状[J]. 硅酸盐通报, 2023, 42(2): 383-392. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||