硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (11): 3934-3946.DOI: 10.16552/j.cnki.issn1001-1625.2025.0754
杨靖娴1, 马丽萍1, 何宾宾1, 吴彰钰2, 佘伟2
收稿日期:2025-07-30
修订日期:2025-09-04
出版日期:2025-11-15
发布日期:2025-12-04
通信作者:
佘 伟,博士,教授。E-mail:weishe@seu.edu.cn
作者简介:杨靖娴(1995—),女,博士,讲师。主要从事磷石膏等固废胶凝材料的研究。E-mail:jingxianyang@kust.edu.cn
基金资助:YANG Jingxian1, MA Liping1, HE Binbin1, WU Zhangyu2, SHE Wei2
Received:2025-07-30
Revised:2025-09-04
Published:2025-11-15
Online:2025-12-04
摘要: 工业固废磷石膏的大量堆存与环境污染已成为严峻挑战,而传统水泥产业的高能耗与高排放特性也背离我国“双碳”战略目标。开发磷石膏基固废碱激发胶凝材料以部分替代水泥,是同步解决上述问题的有效途径。本文基于磷石膏的理化特性,系统阐释了磷石膏基固废碱激发胶凝材料的胶结硬化机理;梳理并对比了典型磷石膏基固废碱激发胶凝材料体系的性能特点;综述了该类材料在道路基层、填充工程等领域的应用现状与发展潜力。本研究旨在为磷石膏在高性能、高附加值和环境友好型工程材料中的资源化利用提供理论支撑与技术参考。
中图分类号:
杨靖娴, 马丽萍, 何宾宾, 吴彰钰, 佘伟. 磷石膏基固废碱激发胶凝材料研究进展[J]. 硅酸盐通报, 2025, 44(11): 3934-3946.
YANG Jingxian, MA Liping, HE Binbin, WU Zhangyu, SHE Wei. Research Progress on Phosphogypsum-Based Solid Waste Alkali-Activated Cementitious Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(11): 3934-3946.
| [1] 缪昌文, 穆 松. “双碳”目标下水泥基材料绿色低碳路径思考与展望[J]. 未来城市设计与运营, 2022(2): 10-16. MIAO C W, MU S. Thoughts and prospects on the green and low-carbon pathway of cement-based materials under the "Dual-Carbon" goals[J]. Future City Studies, 2022(2): 10-16 (in Chinese). [2] 马丽萍. 云南磷石膏资源化综合利用现状及发展思考[J]. 云南化工, 2019, 46(11): 48-56. MA L P. Comprehensive utilization of phosphogypsum in Yunnan-present situation and analysis[J]. Yunnan Chemical Technology, 2019, 46(11): 48-56 (in Chinese). [3] 李 芳, 谷海明. 浅析磷肥企业磷石膏堆存与综合利用[J]. 环境科学导刊, 2016, 35(增刊1): 98-99, 117. LI F, GU H M. Analysis of stockpiling and comprehensive utilization of phosphogypsum in the phosphate fertilizer industry[J]. Environmental Science Survey, 2016, 35(supplement 1): 98-99, 117 (in Chinese). [4] 温小韵, 童 雄, 尚江涛, 等. 磷石膏基胶凝材料的力学性能及应用研究进展[J]. 硅酸盐通报, 2025, 44(3): 953-969. WEN X Y, TONG X, SHANG J T, et al. Progress on application and mechanical properties of phosphogypsum cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(3): 953-969 (in Chinese). [5] LEE J, YI S C. Assessment of radiological impact on the surrounding environment and biota for phosphogypsum waste stockyard in Korean facility[J]. Environmental Monitoring and Assessment, 2023, 195(6): 767. [6] BLEBEA-APOSTU A M, CLAUDIA GOMOIU M, MIRCEA MĂRGINEANU R, et al. The Bacau (Romania) phosphogypsum stacks as a source of radioactive threat: a case study[J]. Isotopes in Environmental and Health Studies, 2025, 61(1): 61-75. [7] 林宗寿, 黄 赟. 磷石膏基免煅烧水泥的开发研究[J]. 武汉理工大学学报, 2009, 31(4): 53-55. LIN Z S, HUANG Y. Investigation on phosphogypsum-base non-calcined cement[J]. Journal of Wuhan University of Technology, 2009, 31(4): 53-55 (in Chinese). [8] PLIAKA M, GAIDAJIS G. Potential uses of phosphogypsum: a review[J]. Journal of Environmental Science and Health, Part A, 2022, 57(9): 746-763. [9] SAADAOUI E, GHAZEL N, BEN ROMDHANE C, et al. Phosphogypsum: potential uses and problems: a review[J]. International Journal of Environmental Studies, 2017, 74(4): 558-567. [10] ENNACIRI Y, BETTACH M. Procedure to convert phosphogypsum waste into valuable products[J]. Materials and Manufacturing Processes, 2018, 33(16): 1727-1733. [11] YIN X, MA L P, LI K, et al. Preparation of phosphogypsum-based cemented paste backfill and its environmental impact based on multi-source industrial solid waste[J]. Construction and Building Materials, 2023, 404: 133314. [12] CHEN B J, WU F H, QU G F, et al. Waste control by waste: a comparative study on the application of carbide slag and quicklime in preparation of phosphogypsum-based ecological restoration materials[J]. Chemical Engineering and Processing-Process Intensification, 2022, 178: 109051. [13] WANG Y F, LIU P, KONG D W, et al. Investigation of the properties and microscopic mechanism of red mud-phosphogypsum-based composite cementitious materials[J]. Journal of Building Engineering, 2025, 101: 111962. [14] SHI Y, LI Y, WANG H W. Eco-friendly solid waste-based cementitious material containing a large amount of phosphogypsum: performance optimization, micro-mechanisms, and environmental properties[J]. Journal of Cleaner Production, 2024, 471: 143335. [15] CHEN S, WANG C Q, HE Z Y, et al. CO2 resource utilization in red mud modified phosphogypsum cementitious material: strength development mechanism, heavy metals evaluation and carbon emission reduction effect[J]. Fuel, 2025, 390: 134684. [16] CHEN Y X, REN G S, TONG H, et al. Novel solid-waste-derived activation materials from phosphogypsum, granulated blast-furnace slag, and calcium carbide slag for sustainable marine construction[J]. Case Studies in Construction Materials, 2025, 23: e05096. [17] HU S X, SONG Z Y, TAN Y Z, et al. Physico-mechanical and environmental performance of phosphogypsum-based artificial aggregates formed of compacting-crushing and pouring-crushing methods[J]. Journal of Environmental Chemical Engineering, 2025, 13(3): 116669. [18] 黄照昊, 罗康碧, 李沪萍. 磷石膏中杂质种类及除杂方法研究综述[J]. 硅酸盐通报, 2016, 35(5): 1504-1508. HUANG Z H, LUO K B, LI H P. Types of impurity in phosphogypsum and the method of removing impurity research review[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(5): 1504-1508 (in Chinese). [19] 马林转, 宁 平, 杨月红, 等. 磷石膏预处理工艺综述[J]. 磷肥与复肥, 2007, 22(3): 62-63. MA L Z, NING P, YANG Y H, et al. Review on the technology of phosphogypsum pretreatment[J]. Phosphate and Compound Fertilizer, 2007, 22(3): 62-63 (in Chinese). [20] 巴太斌, 徐亚中, 卢文运, 等. 石灰中和预处理磷石膏试验研究[J]. 新型建筑材料, 2018, 45(2): 96-99. BA T B, XU Y Z, LU W Y, et al. Experimental study on the lime neutralizing pretreatment of phosphogypsum[J]. New Building Materials, 2018, 45(2): 96-99 (in Chinese). [21] 茹晓红. 磷石膏基胶凝材料的制备理论及应用技术研究[D]. 武汉: 武汉理工大学, 2013: 4-5. RU X H. Processing theory and application technology research of phosphogypsum based gypsum plaster[D]. Wuhan: Wuhan University of Technology, 2013: 4-5 (in Chinese). [22] POTGIETER J H, POTGIETER S S, MCCRINDLE R I, et al. An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement[J]. Cement and Concrete Research, 2003, 33(8): 1223-1227. [23] 许晴莹, 杨鼎宜, 吕 伟, 等. 球磨时间对磷石膏基胶凝材料性能影响研究[J]. 无机盐工业, 2022(5): 101-108. XU Q Y, YANG D Y, LV W, et al. Effect of grinding time on properties of phosphogypsum based cementitious materials[J]. Inorganic Chemicals Industry, 2022(5): 101-108 (in Chinese). [24] 赖婧怡. 磷石膏浮选提纯工艺技术研究[D]. 武汉:武汉工程大学, 2023: 5-7. LAI J Y. Study on flotation purification process technology of phosphogypsum[D]. Wuhan: Wuhan University of Technology, 2023: 5-7 (in Chinese). [25] 段庆奎, 王立明. 闪烧法-磷石膏的无害化处理新工艺[J]. 宁夏石油化工, 2004, 23(3): 13-16. DUAN Q K, WANG L M. Flash sintering method: a novel process for the harmless treatment of phosphogypsum[J]. Ningxia Petrochemical Industry, 2004, 23(3): 13-16 (in Chinese). [26] GARG M, PUNDIR A, SINGH R. Modifications in water resistance and engineering properties of β-calcium sulphate hemihydrate plaster-superplasticizer blends[J]. Materials and Structures, 2016, 49(8): 3253-3263. [27] LEWRY A J, WILLIAMSON J. The setting of gypsum plaster[J]. Journal of Materials Science, 1994, 29(20): 5279-5284. [28] 彭小芹. 土木工程材料(第四版)[M]. 重庆: 重庆大学出版社, 2021: 75. PENG X Q. Civil engineering materials (4th ed)[M]. Chongqing: Chongqing University Press, 2021: 75 (in Chinese). [29] 曹瑞林. 含镍铁渣复合碱激发胶凝材料的反应机理与微观特性[D]. 南京: 东南大学, 2021: 6-9. CAO R L. Reaction mechanism and microstructural characteristics of alkali-activated cements incorporation ferronickel slag[D]. Nanjing: Southeast University, 2021: 6-9 (in Chinese). [30] ROY D M. Alkali-activated cements opportunities and challenges[J]. Cement and Concrete Research, 1999, 29(2): 249-254. [31] WANG A G, ZHENG Y, ZHANG Z H, et al. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review[J]. Engineering, 2020, 6(6): 695-706. [32] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44: 299-327. [33] WANG Q, BIAN H G, LI M Z, et al. Effects of a water-glass module on compressive strength, size effect and stress-strain behavior of geopolymer recycled aggregate concrete[J]. Crystals, 2022, 12(2): 218. [34] LI Y F, DONG Y H, EL-NAGGAR M R, et al. The influence of particle size and calcium content on performance characteristics of metakaolin- and fly-ash-based geopolymer gels[J]. Gels, 2024, 10(10): 639. [35] HESHMAT M, AMER I, ELGABBAS F, et al. Effect of binder and activator composition on the characteristics of alkali-activated slag-based concrete[J]. Scientific Reports, 2024, 14(1): 13502. [36] GLASSER F P. Cements from micro to macrostructures[J]. British Ceramic Transactions and Journal, 1990, 89(6): 195-202. [37] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research, 2005, 35(6): 1204-1209. [38] 段思宇. 钢渣-粉煤灰-脱硫石膏复合胶凝体系的反应机制及应用研究[D]. 太原: 山西大学, 2020: 11-12. DUAN S Y. Reaction mechanisms and application study of steel slag-fly ash-desulfurized gypsum composite cementitious system[D]. Taiyuan: Shanxi University, 2020: 11-12 (in Chinese). [39] 郝建帅, 周子涵, 陈忠辉, 等. 钢渣在矿山充填胶凝材料中的水化硬化性能研究现状分析[J]. 矿业科学学报, 2024, 9(4): 573-585. HAO J H, ZHOU Z H, CHEN Z H, et al. Review of hydration and hardening properties of steel slag in mine filling cementitious materials[J]. Journal of Mining Science and Technology, 2024, 9(4): 573-585 (in Chinese). [40] 宁朝阳. 煤矸石-磷石膏系道路基层复合胶凝材料性能研究[J]. 交通世界, 2023(17): 34-36. NING C Y. Study on properties of coal gangue-phosphogypsum composite cementitious material for road base[J]. Transpoworld, 2023(17): 34-36 (in Chinese). [41] DEĞIRMENCI N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products[J]. Construction and Building Materials, 2008, 22(8): 1857-1862. [42] JIN Z H, CUI C J, SU Y, et al. Improvement of the mechanical properties of beta-hemihydrate phosphogypsum by incorporating wet-ground low-calcium fly ash slurries[J]. Construction and Building Materials, 2024, 428: 136371. [43] DENG F, YE J, LIU Y L, et al. Influence of cement on properties of calcined phosphogypsum based composite cementitious materials[J]. Journal of Materials Research and Technology, 2023, 24: 3145-3156. [44] HUANG X, LIAO J M, ZHANG J F, et al. Insight into the durability of concrete based on ultrafine ground granulated blast furnace slag, phosphogypsum, and steel slag[J]. Journal of Materials Research and Technology, 2025, 38: 49-61. [45] LIAO Y S, HU M T, YAO J X, et al. Calcium sulfoaluminate cementitious materials with steel slag and calcined phosphogypsum: hydration and physico-mechanical properties[J]. Construction and Building Materials, 2025, 460: 139795. [46] BOUCHHIMA L, ROUIS M J, CHOURA M. Engineering properties of wade sand-lime-cement-phosphogypsum buildingbrick grade MW[J]. International Journal of Engineering and Advanced Technology, 2013, 2(4): 43-49. [47] SAIKHEDE S R, SATONE S R. An experimental investigation of partial replacement of cement by various percentage of phosphogypsum in cement concrete.[J]. International Journal of Engineering Research and Applications. 2014, 4(7): 37-40. [48] YANG L, ZHANG Y S, YAN Y. Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar[J]. Journal of Cleaner Production, 2016, 127: 204-213. [49] SHEN Y, QIAN J S, CHAI J Q, et al. Calcium sulphoaluminate cements made with phosphogypsum: production issues and material properties[J]. Cement and Concrete Composites, 2014, 48: 67-74. [50] SINGH M. Treating waste phosphogypsum for cement and plaster manufacture[J]. Cement and Concrete Research, 2002, 32(7): 1033-1038. [51] HUANG Y, LIN Z S. Investigation on phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement[J]. Construction and Building Materials, 2010, 24(7): 1296-1301. [52] HUA S D, WANG K J, YAO X, et al. Effects of fibers on mechanical properties and freeze-thaw resistance of phosphogypsum-slag based cementitious materials[J]. Construction and Building Materials, 2016, 121: 290-299. [53] UMADEVI R, KAVITHA S, SHASHI KIRAN C R, et al. Studies on elevated temperature of fiber reinforced phosphogypsum concrete[J]. International Journal of Civil Engineering and Technology, 2016, 7(2): 234-246. [54] YANG J K, LIU W C, ZHANG L L, et al. Preparation of load-bearing building materials from autoclaved phosphogypsum[J]. Construction and Building Materials, 2009, 23(2): 687-693. [55] KUMAR S. A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development[J]. Construction and Building Materials, 2002, 16(8): 519-525. [56] NAIK N S, BAHADURE B M, JEJURKAR C L. Strength and durability of fly ash, cement and gypsum bricks[J]. International Journal of Computational Engineering Research, 2014, 4(5): 1-4. [57] MUN K, SO S. Properties of cement mortar with phosphogpysum under steam curing condition[J]. Research Letters in Materials Science, 2008, 2008: 382490. [58] SINDHUJA M, CHANDRASEKHAR E, RAJASEKHAR K. Investigation on permeability charecteristics of phosphogypsum based concrete[J]. IOSR Journal of Mechanical and Civil Engineering, 2016, 13(6): 191-193. [59] HUANG Y Q, LU J X, CHEN F X, et al. The chloride permeability of persulphated phosphogypsum-slag cement concrete[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2016, 31(5): 1031-1037. [60] MUN K J, HYOUNG W K, LEE C W, et al. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator[J]. Construction and Building Materials, 2007, 21(6): 1342-1350. [61] SHEN W G, GAN G J, DONG R, et al. Utilization of solidified phosphogypsum as Portland cement retarder[J]. Journal of Material Cycles and Waste Management, 2012, 14(3): 228-233. [62] DEĞIRMENCI N, OKUCU A. Usability of fly ash and phosphogypsum in manufacturing of building products[J]. Journal of Engineering Sciences, 2007, 13(2): 273-278. [63] CHEN L, LIU T T, CHENG M Q, et al. Enhanced strength and fluoride ion solidification/stabilization mechanism of modified phosphogypsum backfill material[J]. Construction and Building Materials, 2024, 449: 138572. [64] ZHOU S T, LI X B, ZHOU Y N, et al. Effect of phosphorus on the properties of phosphogypsum-based cemented backfill[J]. Journal of Hazardous Materials, 2020, 399: 122993. [65] YIN X, LI K, MA L P, et al. Development of eco-cemented paste backfill by reutilizing multi-source industrial solid waste: properties, hydration processes, and environmental impacts[J]. Powder Technology, 2025, 464: 121276. [66] 湖北昌耀新材料股份有限公司, 武汉理工大学. 一种透水混凝土及其制备方法: 中国, CN119977465A[P]. 2025-05-13. Hubei Changyao New Materials Co., Ltd., Wuhan University of Technology. A kind of pervious concrete and its preparation method: China, CN119977465A[P]. 2025-05-13 (in Chinese). [67] 昆明理工大学, 云南蔚蓝环境工程技术有限公司, 江西省蔚蓝环境工程技术有限公司, 等. 一种磷石膏基多固废再生骨料及其制备方法和应用: 中国, CN119954477A[P]. 2025-05-09. Kunming University of Science and Technology, Yunnan Weilan Environmental Engineering Technology Co., Ltd., Jiangxi Weilan Environmental Engineering Technology Co., Ltd., et al. A phosphogypsum-based multi-solid-waste recycled aggregate and its preparation method and application: China, CN119954477A[P]. 2025-05-09 (in Chinese). [68] 湖北益通建设股份有限公司. 一种大掺量磷石膏基稳定材料及在道路基层中应用: 中国, CN112125630B[P]. 2022-12-06. Hubei Yitong Construction Co., Ltd. A high-content phosphogypsum-based stabilized material and its application in road base course: China, CN112125630B[P]. 2022-12-06 (in Chinese). [69] 东南大学, 中国电建集团贵阳勘测设计研究院有限公司. 一种高掺量磷石膏协同多固废的环保型路基填料及其制备与应用: 中国, CN120309284A[P]. 2025-07-15. Southeast University, Powerchina Guiyang Engineering Corporation Limited. An environmentally friendly roadbed filler with high phosphogypsum content synergizing multiple solid wastes and its preparation and application: China, CN120309284A[P]. 2025-07-15 (in Chinese). [70] 湖北益通建设股份有限公司. 一种磷石膏基加气混凝土砌块及其制备方法: 中国, CN120117873A[P]. 2025-06-10. Hubei Yitong Construction Co., Ltd. A phosphogypsum-based aerated concrete block and its preparation method: China, CN120117873A[P]. 2025-06-10 (in Chinese). [71] 贵州省建筑材料科学研究设计院有限责任公司. 一种轻质磷石膏墙板及其制备方法: 中国, CN119822773A[P]. 2025-04-15. Guizhou Building Materials Research & Design Institute Co., Ltd. A lightweight phosphogypsum wallboard and its preparation method: China, CN119822773A[P]. 2025-04-15 (in Chinese). |
| [1] | 孔伟鹏, 庞来学, 郭威, 田晓峰. 碱激发超细粉-粉煤灰胶凝材料压阻性能研究[J]. 硅酸盐通报, 2025, 44(9): 3288-3294. |
| [2] | 叶纪盛, 马英, 李淯伟, 邰安, 王家豪. 早期CO2养护对钢渣固废胶凝材料性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3326-3336. |
| [3] | 周益凡, 张伟业, 陈安见, 冉金林, 王东星. 地聚合物注浆材料性能增强及工程应用研究综述[J]. 硅酸盐通报, 2025, 44(8): 2873-2890. |
| [4] | 李义胜, 吕伟, 吴赤球, 余正康, 何静, 水中和. 高掺量磷石膏胶凝材料硬化体制备及其性能调节[J]. 硅酸盐通报, 2025, 44(8): 2944-2954. |
| [5] | 梁振升, 张伯涛, 梁瑞庆, 曾俊锋, 郭永昌. PET改性高延性碱激发混凝土的断裂性能[J]. 硅酸盐通报, 2025, 44(7): 2503-2513. |
| [6] | 邓兴辉, 徐桂弘, 包立新, 徐韦洪, 陈孜伟, 杨步雷. 磷石膏基挤压异形砖(PG-ESB)力学性能及孔隙三参数分布特性[J]. 硅酸盐通报, 2025, 44(6): 2240-2249. |
| [7] | 苏瑛, 龚伟, 刘川北, 张俊. 基于机器学习的磷石膏轻骨料混凝土配合比设计与力学性能研究[J]. 硅酸盐通报, 2025, 44(5): 1656-1665. |
| [8] | 崔祎菲, 刘梦华, 张益聪, 艾威侠, 徐诺. 超高性能碱激发混凝土的性能及环境影响研究[J]. 硅酸盐通报, 2025, 44(5): 1689-1702. |
| [9] | 付振博, 杨曦昊, 赵伊萌, 刘云鹏, 李世纪, 李秉函, 赵淑丽, 王磊. 粉煤灰掺量对碱激发材料干燥收缩及抗压强度的影响[J]. 硅酸盐通报, 2025, 44(5): 1717-1725. |
| [10] | 冯伟鹏, 金宇, 孔凡龙, 董志君, 蔡士名, 邵宁宁. 秸秆纤维复合碱激发钢渣基泡沫混凝土的制备[J]. 硅酸盐通报, 2025, 44(5): 1755-1766. |
| [11] | 姜涛, 邓毅, 李鸿峰, 金洪波, 罗程, 吴浩. 碱激发锂渣复合胶凝材料的流变、力学性能及水化特性[J]. 硅酸盐通报, 2025, 44(5): 1767-1778. |
| [12] | 叶伟开, 盛国栋, 鲁刘磊, 张锦红, 张宗洋, 董发鑫, 刘明旺, 汪峻峰, 罗琦. 固体激发剂对单组份碱激发矿渣-飞灰复合胶凝材料的影响[J]. 硅酸盐通报, 2025, 44(5): 1779-1787. |
| [13] | 骆展鹏, 熊春林, 韩泽军, 王胜新, 刘凯华. 矿渣-粉煤灰-玻璃粉复合固化盾构土力学性能及固化机制[J]. 硅酸盐通报, 2025, 44(5): 1803-1812. |
| [14] | 任骏, 余永昆, 毛雯婷, 张毓, 王大富. 基于磷石膏基细轻骨料的砂浆性能研究[J]. 硅酸盐通报, 2025, 44(4): 1420-1427. |
| [15] | 吕阳, 葛云露, 赵博宇, 陈扬, 但建明, 周阳, 柯凯, 李相国. 生物质灰对碱激发矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1288-1296. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||