[1] 李 琛. 碳达峰碳中和背景下水泥行业结构调整之路[J]. 江苏建材, 2021(5): 58-60. LI C. The road of cement industry structure adjustment under the background of carbon peak and carbon neutralization[J]. Jiangsu Building Materials, 2021(5): 58-60 (in Chinese). [2] WEI J X, CEN K. Empirical assessing cement CO2 emissions based on China’s economic and social development during 2001—2030[J]. Science of the Total Environment, 2019, 653: 200-211. [3] XU D L, CUI Y S, LI H, et al. On the future of Chinese cement industry[J]. Cement and Concrete Research, 2015, 78: 2-13. [4] 张 凯, 周 荣, 颜 洋. 水泥行业减污降碳协同路径[J]. 水泥, 2023(12): 18-20. ZHANG K, ZHOU R, YAN Y. Collaborative path for reducing pollution and carbon in cement industry[J]. Cement, 2023(12): 18-20 (in Chinese). [5] YANG P J, PENG S, BENANI N, et al. An integrated evaluation on China’s provincial carbon peak and carbon neutrality[J]. Journal of Cleaner Production, 2022, 377: 134497. [6] 童林智. 锂渣-矿渣基胶凝材料性能研究及其在固化剂中的应用[D]. 南昌: 南昌大学, 2023. TONG L Z. Study on properties of lithium slag-slag base composite cementitious material and its application in curing agent[D]. Nanchang: Nanchang University, 2023 (in Chinese). [7] 丰丽琴, 王云帆, 覃文庆, 等. 江西某低品位锂云母矿浮选试验研究[J]. 非金属矿, 2019, 42(1): 60-62. FENG L Q, WANG Y F, QIN W Q, et al. Experimental study on flotation of a low grade lepidolite ore from Jiangxi[J]. Non-Metallic Mines, 2019, 42(1): 60-62 (in Chinese). [8] WANG Y R, WANG D M, CUI Y, et al. Micro-morphology and phase composition of lithium slag from lithium carbonate production by sulphuric acid process[J]. Construction and Building Materials, 2019, 203: 304-313. [9] 陈志友, 苏小琼, 杨志文, 等. 锂云母锂渣性质及利用研究现状[J]. 硅酸盐通报, 2021, 40(3): 877-882. CHEN Z Y, SU X Q, YANG Z W, et al. Research status of properties and utilization of lepidolite lithium slag[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 877-882 (in Chinese). [10] 郑文忠, 邹梦娜, 王 英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1): 28-39. ZHENG W Z, ZOU M N, WANG Y. Literature review of alkali-activated cementitious materials[J]. Journal of Building Structures, 2019, 40(1): 28-39 (in Chinese). [11] LIU Y W, SHI C J, ZHANG Z H, et al. Mechanical and fracture properties of ultra-high performance geopolymer concrete: effects of steel fiber and silica fume[J]. Cement and Concrete Composites, 2020, 112: 103665. [12] KOVTUN M, KEARSLEY E P, SHEKHOVTSOVA J. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate[J]. Cement and Concrete Research, 2015, 72: 1-9. [13] BAYAT A, HASSANI A, YOUSEFI A A. Effects of red mud on the properties of fresh and hardened alkali-activated slag paste and mortar[J]. Construction and Building Materials, 2018, 167: 775-790. [14] BARBOSA L I, GONZÁLEZ J A, RUIZ M D C. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride[J]. Thermochimica Acta, 2015, 605: 63-67. [15] GRANATA G, MOSCARDINI E, PAGNANELLI F, et al. Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: lab scale tests and process simulations[J]. Journal of Power Sources, 2012, 206: 393-401. [16] 胡志远. 锂渣复合渣混凝土研究[D]. 重庆: 重庆大学, 2008. HU Z Y. Study on lithium slag composite slag concrete[D]. Chongqing: Chongqing University, 2008 (in Chinese). [17] LIU Z, WANG J X, JIANG Q K, et al. A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag[J]. Journal of Cleaner Production, 2019, 225: 1184-1193. [18] TAN H B, LI M G, HE X Y, et al. Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement[J]. Journal of Cleaner Production, 2020, 250: 119528. [19] LUO Q, WANG Y S, HONG S X, et al. Properties and microstructure of lithium-slag-based geopolymer by one-part mixing method[J]. Construction and Building Materials, 2021, 273: 121723. [20] LUO Q, LIU Y T, DONG B Q, et al. Lithium slag-based geopolymer synthesized with hybrid solid activators[J]. Construction and Building Materials, 2023, 365: 130070. [21] KARRECH A, DONG M, ELCHALAKANI M, et al. Sustainable geopolymer using lithium concentrate residues[J]. Construction and Building Materials, 2019, 228: 116740. [22] ALI S F, CHEN B, AHMAD M R, et al. Development of cleaner one-part geopolymer from lithium slag[J]. Journal of Cleaner Production, 2021, 291: 125241. [23] 刘 猛, 李百战, 姚润明. 水泥生产能源消耗内含碳排放量分析[J]. 重庆大学学报, 2011, 34(3): 116-120+131. LIU M, LI B Z, YAO R M. Embodied carbon emission from energy consumption in the production of selected cement products[J]. Journal of Chongqing University, 2011, 34(3): 116-120+131 (in Chinese). [24] MIAO Y, KONG C C, WANG L L, et al. A provincial lateral carbon emissions compensation plan in China based on carbon budget perspective[J]. Science of The Total Environment, 2019, 692: 1086-1096. [25] DONG J L, ZHANG T T, ZHU Y C, et al. Synthesis of alkali-activated uncalcined pisha sandstone cement composites[J]. Composites Part B: Engineering, 2021, 225: 109311. [26] 霍彬彬, 张吉雄, 周 楠, 等. 十二烷基硫酸钠对碱激发煤气化渣充填料浆封存CO2及流变性能的影响[J]. 采矿与安全工程学报, 2024, 41(6): 1279-1288. HUO B B, ZHANG J X, ZHOU N, et al. Effect of sodium dodecyl sulfate on the CO2 sequestration and rheological properties of alkali-activated coal gasification slag backfill pastes[J]. Journal of Mining & Safety Engineering, 2024, 41(6): 1279-1288 (in Chinese). [27] GUO X L, LI Y X, SHI H S, et al. Carbon reduction in cement industry-an indigenized questionnaire on environmental impacts and key parameters of life cycle assessment (LCA) in China[J]. Journal of Cleaner Production, 2023, 426: 139022. [28] ZHANG X S, LI H B, WANG H Y, et al. Properties of RCA stabilized with alkali-activated steel slag based materials in pavement base: laboratory tests, field application and carbon emissions[J]. Construction and Building Materials, 2024, 411: 134547. [29] 肖建庄, 黎 骜, 丁 陶. 再生混凝土生命周期CO2排放评价[J]. 东南大学学报(自然科学版), 2016, 46(5): 1088-1092. XIAO J Z, LI A, DING T. Life cycle assessment on CO2 emission for recycled aggregate concrete[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(5): 1088-1092 (in Chinese). |