[1] WANG H M, LIU X M, ZHANG Z Q. Pozzolanic activity evaluation methods of solid waste: a review[J]. Journal of Cleaner Production, 2023, 402: 136783. [2] XU Z, LI C P, XIAO B L, et al. Development of slag-based filling cementitious materials and their application in ultrafine tailing sand filling[J]. Construction and Building Materials, 2024, 452: 138966. [3] SEIFU M N, JANG D, KIM G M, et al. Improving properties of Portland cement-blast furnace slag blended paste through sodium bicarbonate-induced carbonation[J]. Developments in the Built Environment, 2024, 20: 100575. [4] ZHOU Q, ZHANG Y Y, LIU J H, et al. Research and application status and development trend of alkali-activated binder powder for mine backfill[J]. Journal of Renewable Materials, 2022, 10(12): 3185-3199. [5] QIN X T, CAO Y H, GUAN H W, et al. Resource utilization and development of phosphogypsum-based materials in civil engineering[J]. Journal of Cleaner Production, 2023, 387: 135858. [6] XING J R, ZHOU Y, PENG Z C, et al. The influence of different kinds of weak acid salts on the macro-performance, micro-structure, and hydration mechanism of the supersulfated cement[J]. Journal of Building Engineering, 2023, 66: 105937. [7] GANESH P, MURTHY A R. Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material[J]. Construction and Building Materials, 2019, 197: 667-680. [8] MA X B, SHI D Q, XIA Y, et al. Controllable setting time of alkali-activated materials incorporating sewage sludge ash and GGBS: the role of retarders[J]. Construction and Building Materials, 2024, 412: 134857. [9] YANG J, WANG Z Q, HE X Y, et al. Using superabsorbent polymer to mitigate the fast setting and high autogenous shrinkage of carbide slag and sodium silicate activated ultrafine GGBS based composites[J]. Sustainable Chemistry and Pharmacy, 2024, 39: 101550. [10] 栾明昱. 水淬高炉矿渣解离行为研究[D]. 重庆: 重庆大学, 2020. LUAN M Y. Study on dissociation behavior of ground granulated blast furnace slag[D]. Chongqing: Chongqing University, 2020 (in Chinese). [11] 朱效宏. 高效减水剂与电气石粉协同作用对碱矿渣胶结材浆体性能影响研究[D]. 重庆: 重庆大学, 2017. ZHU X H. Synergistic effect of superplasticizers and tourmaline powder on properties of water glass-activated slag binder paste[D]. Chongqing: Chongqing University, 2017 (in Chinese). [12] 陈 伟, 唐焱杰, 田 健, 等. 聚合铝改性磷石膏基超硫矿渣胶凝材料制备与性能研究[J]. 武汉理工大学学报, 2016, 38(2): 1-6. CHEN W, TANG Y J, TIAN J, et al. Research on preparation and performance of poly-Al enhanced phosphorus gypsum based super-sulphated cement[J]. Journal of Wuhan University of Technology, 2016, 38(2): 1-6 (in Chinese). [13] LI B, QIN J F, LI Q, et al. Promoting the dissolution of slag in blended cement via adding polyaluminum sulfate and controlling the inner spatial zonation[J]. Construction and Building Materials, 2023, 399: 132543. [14] 林宗寿, 黄 赟, 水中和, 等. 过硫磷石膏矿渣水泥与混凝土[M]. 武汉: 武汉理工大学出版社, 2015. LIN Z S, HUANG Y, SHUI Z H, et al. Excess-sulfate phosphogypsum slag cement and concrete[M]. Wuhan: Wuhan University of Technology Press, 2015 (in Chinese). [15] 冯成洪, 毕 哲, 伍晓红. 聚合氯化铝絮凝形态学与凝聚絮凝机理[M]. 北京: 科学出版社, 2015. FENG C H, BI Z, WU X H. Polyaluminum chloride flocculation morphology and coagulation flocculation mechanism[M]. Beijing: Science Press, 2015 (in Chinese). [16] LIU X, TANG P, CHEN W. Development of an ettringite-based low carbon binder by promoting the nucleation and Ostwald ripening process[J]. Construction and Building Materials, 2024, 427: 136282. |