硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 212-226.DOI: 10.16552/j.cnki.issn1001-1625.2025.0702
王庆佩1(
), 李辉1,2,3(
), 郑伍魁1, 袁文滨1, 常宁1, 周州1
收稿日期:2025-07-18
修订日期:2025-09-03
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
李 辉,博士,教授。E-mail:sunshine_lihui@126.com
作者简介:王庆佩(1991—),男,博士研究生。主要从事固体废弃物资源化方面的研究。E-mail:qingpeiw@163.com
基金资助:
WANG Qingpei1(
), LI Hui1,2,3(
), ZHENG Wukui1, YUAN Wenbin1, CHANG Ning1, ZHOU Zhou1
Received:2025-07-18
Revised:2025-09-03
Published:2026-01-20
Online:2026-02-10
摘要:
为推动固废资源化与建筑节能产业的协同发展。本研究利用石蜡与砖渣(BS)制备复合储能颗粒(ESPs),并部分替代砂子掺入石膏基自流平砂浆,制备了新型石膏基自流平相变储能砂浆(NGSESM),通过质量变化法、XRD、FT-IR、SEM、DSC及力学与热性能测试等方法,研究了BS的吸附率与ESPs的泄漏率,以及NGSESM的微观结构、热性能和力学特性。结果表明,不同的吸附条件和BS粒径会影响BS的吸附率和ESPs的泄漏率。掺入ESPs显著影响了相邻区域中石膏晶体的形貌,降低了NGSESM的力学性能。当ESPs替代75%(质量分数)的砂子时,NGSESM的力学性能和流动度满足《石膏基自流平砂浆》(JC/T 1023—2021)中的要求。此外,NGSESM在加热和冷却过程中的相变温度分别为17.2~27.3 ℃和14.9~22.4 ℃,潜热值分别为4.1和4.3 J/g。本研究为固废基建筑节能材料的应用提供了关键技术支撑。
中图分类号:
王庆佩, 李辉, 郑伍魁, 袁文滨, 常宁, 周州. 砖渣基储能颗粒对石膏基自流平砂浆力学-热性能的影响[J]. 硅酸盐通报, 2026, 45(1): 212-226.
WANG Qingpei, LI Hui, ZHENG Wukui, YUAN Wenbin, CHANG Ning, ZHOU Zhou. Mechanical and Thermal Properties of Gypsum-Based Self-Leveling Mortar Incorporated with Brick Slag-Based Energy Storage Particles[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 212-226.
| Composition | SO3 | CaO | Al2O3 | Fe2O3 | MgO | SiO2 | Other |
|---|---|---|---|---|---|---|---|
| Mass fraction/% | 57.64 | 39.78 | 0.09 | 0.05 | 0.55 | 0.27 | 1.62 |
表1 半水石膏的主要化学成分
Table 1 Main chemical composition of HG
| Composition | SO3 | CaO | Al2O3 | Fe2O3 | MgO | SiO2 | Other |
|---|---|---|---|---|---|---|---|
| Mass fraction/% | 57.64 | 39.78 | 0.09 | 0.05 | 0.55 | 0.27 | 1.62 |
| Sample | Substitution rate of ESPs (mass fraction)/% | Mass/g | ||||||
|---|---|---|---|---|---|---|---|---|
| ESPs | Sand | HG | WR | HPMC | SC | Water | ||
| 1 | 0 | 0 | 200 | 800 | 2.5 | 1.0 | 1.0 | 480 |
| 2 | 25 | 50 | 150 | 800 | 2.5 | 1.0 | 1.0 | 480 |
| 3 | 50 | 100 | 100 | 800 | 2.5 | 1.0 | 1.0 | 480 |
| 4 | 75 | 150 | 50 | 800 | 2.5 | 1.0 | 1.0 | 480 |
| 5 | 100 | 200 | 0 | 800 | 2.5 | 1.0 | 1.0 | 480 |
表2 NGSESM的配合比设计
Table 2 Mix proportion design of NGSESM
| Sample | Substitution rate of ESPs (mass fraction)/% | Mass/g | ||||||
|---|---|---|---|---|---|---|---|---|
| ESPs | Sand | HG | WR | HPMC | SC | Water | ||
| 1 | 0 | 0 | 200 | 800 | 2.5 | 1.0 | 1.0 | 480 |
| 2 | 25 | 50 | 150 | 800 | 2.5 | 1.0 | 1.0 | 480 |
| 3 | 50 | 100 | 100 | 800 | 2.5 | 1.0 | 1.0 | 480 |
| 4 | 75 | 150 | 50 | 800 | 2.5 | 1.0 | 1.0 | 480 |
| 5 | 100 | 200 | 0 | 800 | 2.5 | 1.0 | 1.0 | 480 |
图7 BS粒径对BS吸附率、ESPs泄漏率的影响及BS孔隙结构演变的示意图
Fig.7 Influence of BS particle size on adsorption rate of BS, leakage rate of ESPs, and schematic diagram of evolution mechanism of BS pore structure
| [1] |
LI A Z, YANG Y Y, REN Y, et al. Bio-based composite phase change material utilizing wood fiber and coconut oil for thermal management in building envelopes[J]. Journal of Cleaner Production, 2024, 469: 143177.
DOI URL |
| [2] | 何 静, 吕 伟, 吴赤球, 等. 核壳结构磷石膏基骨料/硅酸盐水泥界面特性及其调控[J]. 硅酸盐通报, 2025, 44(2): 613-622. |
|
HE J, LYU W, WU C Q, et al. Interface characteristics and regulation of core-shell structure phosphogypsum-based aggregate/Portland cement[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 613-622 (in Chinese).
DOI |
|
| [3] |
DJAMAI Z I, LARBI A S, SALVATORE F, et al. A new PCM-TRC composite: a mechanical and physicochemical investigation[J]. Cement and Concrete Research, 2020, 135: 106119.
DOI URL |
| [4] |
CUNHA S, SARCINELLA A, REIS N, et al. High temperature performance of cement mortars with incorporation of PEG-based form-stable phase change materials[J]. Construction and Building Materials, 2024, 438: 136946.
DOI URL |
| [5] | 魏 宁, 柳 馨, 铁生年, 等. 形态稳定的Na2SO4·10H2O-Na2HPO4·12H2O共晶盐相变储能材料的制备及热性能提升[J]. 硅酸盐通报, 2022, 41(7): 2533-2541. |
| WEI N, LIU X, TIE S N, et al. Preparation and thermal performance enhancement of shape-stable Na2SO4·10H2O-Na2HPO4·12H2O eutectic salt phase change energy storage materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2533-2541 (in Chinese). | |
| [6] |
BROOKS A L, FANG Y, SHEN Z L, et al. Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials[J]. Cement and Concrete Composites, 2021, 120: 104033.
DOI URL |
| [7] | 刘凤利, 朱教群, 马保国, 等. 相变石膏板制备及其在建筑墙体中应用的研究进展[J]. 硅酸盐学报, 2016, 44(8): 1178-1191. |
| LIU F L, ZHU J Q, MA B G, et al. Research progress on preparation and application of gypsum phase change wallboard in building wall[J]. Journal of the Chinese Ceramic Society, 2016, 44(8): 1178-1191 (in Chinese). | |
| [8] |
MUKRAM T A, DANIEL J. Performance evaluation of a novel cement brick filled with micro-PCM used as a thermal energy storage system in building walls[J]. Journal of Energy Storage, 2024, 77: 109910.
DOI URL |
| [9] |
VENKITARAJ K P, SURESH S, PRAVEEN B, et al. Experimental heat transfer analysis of macro packed neopentylglycol with CuO nano additives for building cooling applications[J]. Journal of Energy Storage, 2018, 17: 1-10.
DOI URL |
| [10] |
ARKAR C, VIDRIH B, MEDVED S. Efficiency of free cooling using latent heat storage integrated into the ventilation system of a low energy building[J]. International Journal of Refrigeration, 2007, 30(1): 134-143.
DOI URL |
| [11] |
ROYON L, KARIM L, BONTEMPS A. Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings[J]. Energy and Buildings, 2014, 82: 385-390.
DOI URL |
| [12] |
KARAIPEKLI A, SARI A, BIÇER A. Thermal regulating performance of gypsum/(C18-C24) composite phase change material (CPCM) for building energy storage applications[J]. Applied Thermal Engineering, 2016, 107: 55-62.
DOI URL |
| [13] |
JIANG Z, NAVARRO RIVERO M E, ANAGNOSTOPOULOS A, et al. Fabrication of form stable composite phase change materials for thermal energy storage by direct powder incorporation with a preheating process[J]. Powder Technology, 2021, 391: 544-556.
DOI URL |
| [14] |
WANG F, LI H, QIAO Z G, et al. Study on the encapsulation effect and mechanism of hollow ceramsite to phase change materials (PCMs)[J]. Journal of Building Engineering, 2024, 90: 109470.
DOI URL |
| [15] |
ZHU Y L, QIN Y S, WEI C S, et al. Nanoencapsulated phase change materials with polymer-SiO2 hybrid shell materials: compositions, morphologies, and properties[J]. Energy Conversion and Management, 2018, 164: 83-92.
DOI URL |
| [16] |
LIU Q Y, XIAO T, GENG L, et al. In situ encapsulation of phase change material by synergistic interaction of polymethyl methacrylate and nano-TiO2 [J]. Journal of Energy Storage, 2023, 67: 107633.
DOI URL |
| [17] | CHEN W C, LIANG X H, HAN W H, et al. 3D shape-stable temperature-regulated macro-encapsulated phase change material: KAl(SO4)2·12H2O-C2H2O4·2H2O-CO(NH2)2 eutectic/polyurethane foam as core and carbon modified silicone resin as shell[J]. Journal of Materials Science & Technology, 2022, 100: 27-35. |
| [18] |
SAKANAKA Y, HIRAIDE S, YAMANE Y, et al. Thermal management in vacuum pressure swing adsorption processes using phase change materials[J]. Chemical Engineering Journal, 2023, 457: 141262.
DOI URL |
| [19] |
WANG Y T, LIU Z B, JIN C L, et al. Experimental study on the preparation and physical thermal performance of coral sand-based phase change material concrete composites[J]. Construction and Building Materials, 2023, 389: 131631.
DOI URL |
| [20] |
WANG F, QIAO Z G, ZHENG W K, et al. Preparing gypsum-based self-levelling energy storage mortar via fly ash cenospheres/paraffin used for floor radiant heating[J]. Construction and Building Materials, 2024, 423: 135865.
DOI URL |
| [21] |
WU D J, GU X B, SUN Q, et al. Thermal conductivity enhancement of diatomite-based composite phase change materials by interfacial reduction deposition of Cu nanoparticles[J]. Journal of Energy Storage, 2023, 61: 106861.
DOI URL |
| [22] |
ZHAO J Q, LI Y C, FANG X Y, et al. High interface compatibility and phase change enthalpy of heat storage wood plastic composites as bio-based building materials for energy saving[J]. Journal of Energy Storage, 2022, 51: 104293.
DOI URL |
| [23] |
ZHAO M X, ZHANG X, KONG X F. Preparation and characterization of a novel composite phase change material with double phase change points based on nanocapsules[J]. Renewable Energy, 2020, 147: 374-383.
DOI URL |
| [24] |
CHEN P, JIANG D H, CHEN Y H, et al. Preparation and thermal properties of phase change energy storage composite material based on modified fly ash[J]. Ceramics International, 2023, 49(22): 35651-35664.
DOI URL |
| [25] |
LIU P, ZHAO Z Y, GU X B, et al. A novel biomass solid waste-based form-stable phase change materials for thermal energy storage[J]. Journal of Materials Research and Technology, 2023, 25: 7039-7049.
DOI URL |
| [26] |
YU B T, LI S Y, ZHU H T, et al. A composite phase change material for improving the freeze-thaw resistance performance of cement mortars[J]. Construction and Building Materials, 2023, 387: 131657.
DOI URL |
| [27] |
LIANG X M, FEI H, LI Y L, et al. Structural characteristics and properties of CA-SA-PW/EG adsorbed into porous cement-based for thermal storage[J]. Materials Today Communications, 2023, 37: 107046.
DOI URL |
| [28] |
ZHAO X G, TANG Y L, XIE W M, et al. 3D hierarchical porous expanded perlite-based composite phase-change material with superior latent heat storage capability for thermal management[J]. Construction and Building Materials, 2023, 362: 129768.
DOI URL |
| [29] |
KUMAR D, ALAM M, SANJAYAN J. An energy-efficient form-stable phase change materials synthesis method to enhance thermal storage and prevent acidification of cementitious composite[J]. Construction and Building Materials, 2022, 348: 128697.
DOI URL |
| [30] |
LIANG Q W, ZHANG H J, LI Y L, et al. Multifunctional response of biomass carbon/sodium sulfate decahydrate composite phase change materials[J]. Journal of Energy Storage, 2024, 83: 110621.
DOI URL |
| [31] |
SUN M Y, FENG D L, SUN F Y, et al. Insights into effect of lignocellulosic biomass framework types on bio-based shape stable composite phase change materials[J]. Journal of Energy Storage, 2024, 91: 112103.
DOI URL |
| [32] |
FANG Y, LIU S, LI X L, et al. Biomass porous potatoes/MXene encapsulated PEG-based PCMs with improved photo-to-thermal conversion capability[J]. Solar Energy Materials and Solar Cells, 2022, 237: 111559.
DOI URL |
| [33] |
WANG T, CUI W, LI X X, et al. Economical and shape-stabilized hydrated salt/bagasse biomass-derived carbon phase change composite for thermal energy storage[J]. Journal of Energy Storage, 2024, 85: 111083.
DOI URL |
| [34] |
XIONG T, OK Y S, DISSANAYAKE P D, et al. Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles[J]. Science of The Total Environment, 2022, 827: 154341.
DOI URL |
| [35] |
MUCHTAR A R, HASSAM C L, SRINIVASAN B, et al. Shape-stabilized phase change materials: performance of simple physical blending synthesis and the potential of coconut based materials[J]. Journal of Energy Storage, 2022, 52: 104974.
DOI URL |
| [36] |
KALIDASAN B, PANDEY A K, SAIDUR R, et al. Green synthesized 3D coconut shell biochar/polyethylene glycol composite as thermal energy storage material[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103505.
DOI URL |
| [37] |
ZHOU J H, FEI H, HE Q, et al. Structural characteristics and thermal performances of lauric-myristic-palmitic acid introduced into modified water hyacinth porous biochar for thermal energy storage[J]. Science of The Total Environment, 2023, 882: 163670.
DOI URL |
| [38] |
REN J C, LU W Y, ZHANG F Q, et al. Green conversion of delignified sorghum straw and polyethylene glycol into form-stable phase change materials with promising solar energy capture, transition, and storage capabilities[J]. International Journal of Biological Macromolecules, 2024, 261: 129808.
DOI URL |
| [39] |
JI Z, ABDALKARIM S Y H, LI H M, et al. Waste pomelo peels-derived ultralow density 3D-porous carbon aerogels: mechanisms of “soft-rigid” structural formation and solar-thermal energy storage conversion[J]. Solar Energy Materials and Solar Cells, 2023, 259: 112453.
DOI URL |
| [40] | 毕 钰, 秦拥军, 罗 玲, 等. 混掺再生粗骨料和再生微粉混凝土的早期力学性能[J]. 硅酸盐通报, 2025, 44(2): 623-633. |
|
BI Y, QIN Y J, LUO L, et al. Early mechanical properties of concrete mixed with recycled coarse aggregate and recycled powder[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 623-633 (in Chinese).
DOI |
|
| [41] |
GUO H S, WANG Q P, LI W F, et al. Phase transformation and physical properties of binding materials fabricated from solid waste FGD gypsum by oil bath heating and the micromorphology and formation mechanism of their hydration products[J]. Construction and Building Materials, 2023, 377: 130981.
DOI URL |
| [42] |
CHANG N, LI H, LIU W H, et al. Mechanical strength, hydration products, and microstructure of waste-derived composite-activated cementitious materials by varying titanium gypsum phase composition[J]. Construction and Building Materials, 2024, 456: 139328.
DOI URL |
| [43] | 徐照芸, 罗团生, 马登杰, 等. 多孔SiC陶瓷/石蜡复合相变材料定型封装及热性能研究[J]. 硅酸盐通报, 2022, 41(10): 3658-3666. |
| XU Z Y, LUO T S, MA D J, et al. Stereotypes package and thermal properties of porous SiC ceramics/paraffin composite phase change materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3658-3666 (in Chinese). | |
| [44] |
BALAPOUR M, MUTUA A W, FARNAM Y. Evaluating the thermal efficiency of microencapsulated phase change materials for thermal energy storage in cementitious composites[J]. Cement and Concrete Composites, 2021, 116: 103891.
DOI URL |
| [45] |
LIU F J, WANG J L, QIAN X. Integrating phase change materials into concrete through microencapsulation using cenospheres[J]. Cement and Concrete Composites, 2017, 80: 317-325.
DOI URL |
| [46] |
ZHANG D, LI Z J, ZHOU J M, et al. Development of thermal energy storage concrete[J]. Cement and Concrete Research, 2004, 34(6): 927-934.
DOI URL |
| [47] |
AGUAYO M, DAS S, MAROLI A, et al. The influence of microencapsulated phase change material (PCM) characteristics on the microstructure and strength of cementitious composites: experiments and finite element simulations[J]. Cement and Concrete Composites, 2016, 73: 29-41.
DOI URL |
| [48] |
LIU Q Y, DONG J M, LI R G, et al. Preparation and properties of fatty acid/alcohol composite phase change mortar[J]. Construction and Building Materials, 2024, 416: 135195.
DOI URL |
| [49] |
LI Z J, ZHANG S K, WU C, et al. Influence of fiber type and content on the flexural strength of cemented lithium feldspar tailings backfill composites[J]. Journal of CO2 Utilization, 2024, 90: 102990.
DOI URL |
| [50] |
REN M, CHEN T F, GAO X J, et al. Long term properties of cement-based material incorporated with n-octadecane/diatomite composite SSPCM[J]. Cement and Concrete Composites, 2023, 142: 105156.
DOI URL |
| [51] |
PILEHVAR S, CAO V D, SZCZOTOK A M, et al. Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials[J]. Cement and Concrete Research, 2017, 100: 341-349.
DOI URL |
| [52] |
ATES F, WOO B H, JANG C, et al. Enhancing cementitious composites with PCM-impregnated cork granules for sustainable and energy-efficient building elements[J]. Construction and Building Materials, 2024, 416: 135071.
DOI URL |
| [53] |
MOUJOUD Z, HARRATI A, MANNI A, et al. Study of fired clay bricks with coconut shell waste as a renewable pore-forming agent: technological, mechanical, and thermal properties[J]. Journal of Building Engineering, 2023, 68: 106107.
DOI URL |
| [54] |
LARWA B, CESARI S, BOTTARELLI M. Study on thermal performance of a PCM enhanced hydronic radiant floor heating system[J]. Energy, 2021, 225: 120245.
DOI URL |
| [55] | SUN K Y, KOU Y, ZHANG Y W, et al. Photo-triggered hierarchical porous carbon-based composite phase-change materials with superior thermal energy conversion capacity[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3445-3453. |
| [56] |
LIU Z Y, ZHANG S, HU D, et al. Paraffin/red mud phase change energy storage composite incorporated gypsum-based and cement-based materials: microstructures, thermal and mechanical properties[J]. Journal of Hazardous Materials, 2019, 364: 608-620.
DOI URL |
| [57] |
CUI W, LI X X, LI X Y, et al. Thermal performance of modified melamine foam/graphene/paraffin wax composite phase change materials for solar-thermal energy conversion and storage[J]. Journal of Cleaner Production, 2022, 367: 133031.
DOI URL |
| [58] |
UMAIR M M, ZHANG Y A, IQBAL K, et al. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage-a review[J]. Applied Energy, 2019, 235: 846-873.
DOI URL |
| [59] |
WANG C Q, WANG Z Y, WANG J W, et al. Modification mechanism, heavy metal coupling and ecological security risk assessment of phosphogypsum utilization in self-leveling mortar[J]. Sustainable Chemistry and Pharmacy, 2024, 37: 101427.
DOI URL |
| [60] |
XU Q Y, WANG J C, SHE A M, et al. Performance and mechanism of amino acids (AAs) on the gypsum setting-time control[J]. Construction and Building Materials, 2024, 411: 134373.
DOI URL |
| [61] |
LUO S Q, XIANG T Y, YANG L, et al. Innovative synthesis of high-strength α-hemihydrate gypsum: effects and mechanisms of TA modification under microwave hydrothermal conditions[J]. Ceramics International, 2024, 50(20): 38079-38088.
DOI URL |
| [62] |
WANG L, YANG H, CHEN W T, et al. Preparation of infiltrating calcium carbonate layer in gypsum substrate using novel calcium precursor: the implication for the protection of the surface weathered carbonate heritages from water erosion damage[J]. Surfaces and Interfaces, 2024, 44: 103685.
DOI URL |
| [63] |
ANGHEL E M, GEORGIEV A, PETRESCU S, et al. Thermo-physical characterization of some paraffins used as phase change materials for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(2): 557-566.
DOI URL |
| [64] | 张逸超, 梁佳彤, 虞凯凯, 等. 相变混凝土抗冻性研究现状及发展方向[J]. 硅酸盐通报, 2024, 43(11): 3923-3934+3967. |
| ZHANG Y C, LIANG J T, YU K K, et al. Research status and development trend of frost resistance of phase change concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(11): 3923-3934+3967 (in Chinese). |
| [1] | 齐广政, 张强, 刘宣. 脱硫石膏对铝酸钙-电石渣协同激发超硫酸盐水泥水化特性的调控机理[J]. 硅酸盐通报, 2025, 44(6): 2250-2258. |
| [2] | 崔祎菲, 刘梦华, 张益聪, 艾威侠, 徐诺. 超高性能碱激发混凝土的性能及环境影响研究[J]. 硅酸盐通报, 2025, 44(5): 1689-1702. |
| [3] | 梅文政, 高鹏, 蔚畅, 原皓, 周明凯. 矿渣-硫酸盐对循环流化床飞灰基胶凝材料的复合增强效应研究[J]. 硅酸盐通报, 2025, 44(4): 1337-1345. |
| [4] | 杨普新, 范明辉, 李薇, 任文渊, 张爱军. 钼尾矿砂自密实混凝土可行性研究及环境成本效益分析[J]. 硅酸盐通报, 2025, 44(2): 540-549. |
| [5] | 陈沁媛, 闫一凡, 赵振华, 张爱国, 关强, 何跃. 固废基陶粒重金属固化效果及产品性能的影响因素研究进展[J]. 硅酸盐通报, 2025, 44(2): 515-530. |
| [6] | 倪振坤, 薛力梨, 丁艳玲, 刘红飞, 刘开富. 脱硫石膏对碱激发胶凝材料性能及微观结构的影响[J]. 硅酸盐通报, 2024, 43(8): 2933-2940. |
| [7] | 孙增宝, 柳馨, 铁生年. KGM/CNC碳气凝胶定型共晶盐芒硝复合相变材料的制备及热性能研究[J]. 硅酸盐通报, 2024, 43(8): 3071-3078. |
| [8] | 朱保顺, 田玉明, 牟维鹏, 高云峰, 丰铭, 李慧宇. 利用粉煤灰制备Ni负载的微波吸收材料[J]. 硅酸盐通报, 2024, 43(8): 3089-3097. |
| [9] | 张坤, 付智勇, 张凌寒, 杨文豪, 兰官奇, 朱熹育. 三种固废改性生土材料配方设计及力学性能研究[J]. 硅酸盐通报, 2024, 43(2): 603-616. |
| [10] | 刘毓彬, 黄勇, 鱼瑞, 孙健, 郭陆龙, 梁心铭, 左保玺. 天然沙漠砂混凝土配合比优化研究[J]. 硅酸盐通报, 2024, 43(12): 4406-4416. |
| [11] | 张逸超, 梁佳彤, 虞凯凯, 俞坚, 李轩, 刘志成, 李彤, 房延凤. 相变混凝土抗冻性研究现状及发展方向[J]. 硅酸盐通报, 2024, 43(11): 3923-3934. |
| [12] | 胡晓婷, 周煜滔, 刘永梅, 郭洁敏, 孟秀芳, 申曙光. 阳离子对制备半水硫酸钙晶须影响的研究进展[J]. 硅酸盐通报, 2024, 43(10): 3858-3864. |
| [13] | 赵成琳, 袁文海, 董祎然, 姜葱葱, 何彪, 黄世峰, 程新. 花岗岩废料与玻璃废渣制备发泡陶瓷的研究[J]. 硅酸盐通报, 2024, 43(1): 329-338. |
| [14] | 彭蔓, 高涌涛, 韩杨, 陈秀丽, 寇雄俊. 废旧钢纤维增强橡胶混凝土力学性能试验研究[J]. 硅酸盐通报, 2023, 42(9): 3286-3294. |
| [15] | 陈志纯, 郭丽萍, 李应权, 陈嘉宇, 杨冬蕾. 石蜡乳液相变泡沫混凝土试验研究[J]. 硅酸盐通报, 2023, 42(5): 1623-1629. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||