[1] HASANBEIGI A, PRICE L, LIN E. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: a technical review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 6220-6238. [2] GARTNER E. Industrially interesting approaches to “low-CO2” cements[J]. Cement and Concrete Research, 2004, 34(9): 1489-1498. [3] ANDREW R M. Global CO2 emissions from cement production[J]. Earth System Science Data, 2019, 11(4): 1675-1710. [4] 孙正宁, 周 健, 慕 儒, 等. 新型超硫酸盐水泥水化硬化机理[J]. 硅酸盐通报, 2019, 38(8): 2362-2368. SUN Z N, ZHOU J, MU R, et al. Hydration and hardening mechanisms of newly developed supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2362-2368 (in Chinese). [5] WU Q Y, XUE Q Z, YU Z Q. Research status of super sulfate cement[J]. Journal of Cleaner Production, 2021, 294: 126228. [6] PINTO S R, ANGULSKI DA LUZ C, MUNHOZ G S, et al. Durability of phosphogypsum-based supersulfated cement mortar against external attack by sodium and magnesium sulfate[J]. Cement and Concrete Research, 2020, 136: 106172. [7] ABD EL AZIZ M, ABD EL ALEEM S, HEIKAL M, et al. Hydration and durability of sulphate-resisting and slag cement blends in Caron’s Lake water[J]. Cement and Concrete Research, 2005, 35(8): 1592-1600. [8] GRUSKOVNJAK A, LOTHENBACH B, WINNEFELD F, et al. Hydration mechanisms of super sulphated slag cement[J]. Cement and Concrete Research, 2008, 38(7): 983-992. [9] ERDEM E, HALIS Ö. The mechanical properties of supersulphated cement containing phosphogypsum[J]. Cement and Concrete Research, 1993, 23(1): 115-121. [10] 王 露, 涂拥军, 高富豪, 等. 改性磷石膏对超硫酸盐水泥水化特性的影响[J]. 材料导报, 2024, 38(14): 138-143. WANG L, TU Y J, GAO F H, et al. Effect of modified phosphogypsum on hydration characteristics of supersulfated cement[J]. Materials Reports, 2024, 38(14): 138-143 (in Chinese). [11] LI J S, ZHANG W, HUANG X, et al. MgO-based supersulfated cement with different industrial by-product gypsum: experiments and molecular dynamics simulation[J]. Science of the Total Environment, 2024, 941: 173756. [12] LI B B, HOU P K, CHEN H, et al. GGBS hydration acceleration evidence in supersulfated cement by nano SiO2[J]. Cement and Concrete Composites, 2022, 132: 104609. [13] ZHOU Y, PENG Z C, CHEN L C, et al. The influence of two types of alkali activators on the microstructure and performance of supersulfated cement concrete: mitigating the strength and carbonation resistance[J]. Cement and Concrete Composites, 2021, 118: 103947. [14] 王若愚, 王焕焕, 陈 衡, 等. 纳米二氧化硅对超硫酸盐水泥中石膏最佳掺量的影响[J]. 硅酸盐通报, 2024, 43(3): 995-1002. WANG R Y, WANG H H, CHEN H, et al. Effect of nano-SiO2 on optimum gypsum content in supersulfate cement[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 995-1002 (in Chinese). [15] AAKRIT I, MAITI S, JAIN N, et al. A comprehensive review of flue gas desulphurized gypsum: production, properties, and applications[J]. Construction and Building Materials, 2023, 393: 131918. [16] NGUYEN H A, CHEN C T, CHANG T P, et al. Utilizations of preheated flue gas desulfurization gypsum and sulfate compositions to modify performances of super-sulfated cement[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(24): 13761-13773. [17] 施惠生, 刘红岩. 脱硫石膏在矿渣水泥中的资源化利用[J]. 同济大学学报(自然科学版), 2008, 36(1): 66-70. SHI H S, LIU H Y. Resource recovery of flue gas desulphurization gypsum in slag cement[J]. Journal of Tongji University (Natural Science), 2008, 36(1): 66-70 (in Chinese). [18] ZHU G J, QI Z J, KOU Y P. Kinetic study on the hydration of supersulfated cements[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(11): 5285-5297. [19] 周建伟, 程宝军, 余保英, 等. 脱硫石膏的热处理对超硫酸盐水泥性能的影响[J]. 无机盐工业, 2020, 52(11): 79-85. ZHOU J W, CHENG B J, YU B Y, et al. Effect of heat-treated desulfurized gypsum on properties of super sulfated cement[J]. Inorganic Chemicals Industry, 2020, 52(11): 79-85 (in Chinese). [20] GUO X L, SHI H S. Influence of thermally treated flue gas desulfurization (FGD) gypsum on performance of the slag powder concrete[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2013, 28(6): 1122-1127. [21] QI G Z, ZHANG Q, SUN Z N. Effect of calcium aluminate and carbide slag on mechanical property and hydration mechanism of supersulfated cement[J]. Buildings, 2024, 14(4): 930. [22] SUN Z N, NIE S, ZHOU J, et al. Hydration mechanism of calcium sulfoaluminate-activated supersulfated cement[J]. Journal of Cleaner Production, 2022, 333: 130094. |